Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a. \(\frac{2x+3}{15}=\frac{7}{5}\)
\(\Leftrightarrow5\left(2x+3\right)=15.7\)
\(\Leftrightarrow10x+15=105\)
\(\Leftrightarrow10x=90\)
\(\Leftrightarrow x=9\)
b. \(\frac{x-2}{9}=\frac{8}{3}\)
\(\Leftrightarrow3\left(x-2\right)=9.8\)
\(\Leftrightarrow3x-6=72\)
\(\Leftrightarrow3x=78\)
\(\Leftrightarrow x=26\)
c. \(\frac{-8}{x}=\frac{-x}{18}\)
\(\Leftrightarrow-x^2=-144\)
\(\Leftrightarrow x^2=12^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
Mấy câu kia tương tự
d, \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=6x-12\Leftrightarrow4x=-27\Leftrightarrow x=-\frac{27}{4}\)
e, \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x=132\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f, \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x=10\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x+2\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
g, \(\left(2x-1\right)\left(2x+1\right)=63\Leftrightarrow4x^2+2x-2x-1=63\Leftrightarrow4x^2-64=0\)
\(\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
h, \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow\left(10x+5\right)\left(x+1\right)=30\Leftrightarrow10x^2+10x+5x+5=30\)
\(\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(2x+5\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}\)
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
1.
b) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x.1+3^x.3^2=2430\)
\(\Rightarrow3^x.\left(1+3^2\right)=2430\)
\(\Rightarrow3^x.10=2430\)
\(\Rightarrow3^x=2430:10\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=15\\2x-15=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=15:2\\2x-15=1\\2x-15=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\2x=16\\2x=14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}.\)
Chúc bạn học tốt!
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)