K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)

=>1/x+1=-1009/2022

=>x+1=-2022/1009

hay x=-3031/1009

16 tháng 4 2023

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

7 tháng 4 2023

Ta có:

1/3 + 1/6 + 1/10 + ... + 1/x(x+1):2 = 2001/2003

=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2001/2003

=> 2 [1/6 + 1/12 + 1/20 + ... + 1/x(x+1)] = 2001/2003

=> 2 [1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x+(x+1)] = 2001/2003

=> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1= 2001/2003 : 2

=> 1/2 - 1/x+1 = 2001/4006

=> 1/x+1 = 1/2 - 2001/4006 = 1/2003

=> x+1 = 2003 = 2002 + 1 

=>x = 2002

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

20 tháng 4 2016

=>2/6+2/12+2/20+...+2/x(x+1)=2013/2015

=>2(1/2.3+1/3.4+1/4.5+...+1/x(x+1)=2013/2015

=>2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015

=>(1/2-1/x+1)=2013/2015:2

=>-(1/x+1)=2013/4030-1/2

=>-(1/x+1)=-(1/2015)=>x+1=2015=>x=2014