Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
ta có: 4n^3 - 4n^2 - n + 4 chia hết cho 2n + 1
=> 4n^3 + 2n^2 - 6n^2 - 3n + 2n + 1 + 3 chia hết cho 2n + 1
2n^2.(2n+1) - 3n.(2n+1) + (2n+1) + 3 chia hết cho 2n + 1
(2n+1).(2n^2-3n+1) + 3 chia hết cho 2n + 1
mà (2n+1).(2n^2-3n+1 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=>...
bn tự làm tiếp nha
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
Ta có: \(\frac{4n^3+11n^2+5n+5}{n+2}=\frac{\left(n+2\right)\left(4n^2+3n-1\right)+7}{n+2}=4n^2+3n-1+\frac{7}{n+2}\)
Để 4n3 + 11n2 + 5n + 5 chia hết cho n + 2 thì \(\frac{7}{n+2}\inℤ\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng giá trị:
Vậy \(n\in\left\{-1;-3;5;-9\right\}\)thì 4n3 + 11n2 + 5n + 5 chia hết cho n + 2