Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Ta có: \(\frac{4n^3+11n^2+5n+5}{n+2}=\frac{\left(n+2\right)\left(4n^2+3n-1\right)+7}{n+2}=4n^2+3n-1+\frac{7}{n+2}\)
Để 4n3 + 11n2 + 5n + 5 chia hết cho n + 2 thì \(\frac{7}{n+2}\inℤ\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng giá trị:
\(n+2\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(-1\) | \(-3\) | \(5\) | \(-9\) |
Vậy \(n\in\left\{-1;-3;5;-9\right\}\)thì 4n3 + 11n2 + 5n + 5 chia hết cho n + 2
\(n^3-4n^2+5n-1=\left(n-3\right)\left(n^2-n+2\right)+5.\)
\(\frac{n^3-4n^2+5n-1}{n-3}=n^2-n+2+\frac{5}{n-3}\)
Để \(n^3-4n^2+5n-1⋮n-3\Rightarrow5⋮n-3\)
\(\Rightarrow n-3=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-2;2;4;8\right\}\)
\(A=\frac{4n+20}{5n+14}\)nguyên thì: \(5A=\frac{20n+100}{5n+14}\)cũng nguyên. Do đó:
\(5A=\frac{20n+56+44}{5n+14}=\frac{4\left(5n+14\right)+44}{5n+14}=4+\frac{44}{5n+14}\)
=> 5n + 14 là ước của 44. Mà U(44) = (-44;-22;-11;-4;-2;-1;1;2;4;11;22;44)
Mà 5n+14 chia 5 dư 4 nên ta chỉ lấy các U(44) mà chia 5 dư 4 đó là: {-11;-1;4;44}
- 5n + 14 = -11 => n = -5
- 5n + 14 = -1 => n = -3
- 5n + 14 = 4 => n = -2
- 5n + 14 = 44 => n = 6
Vậy có 4 giá trị của n để A nguyên là: n = -5 ; -3; -2; 6
ta có: 4n^3 - 4n^2 - n + 4 chia hết cho 2n + 1
=> 4n^3 + 2n^2 - 6n^2 - 3n + 2n + 1 + 3 chia hết cho 2n + 1
2n^2.(2n+1) - 3n.(2n+1) + (2n+1) + 3 chia hết cho 2n + 1
(2n+1).(2n^2-3n+1) + 3 chia hết cho 2n + 1
mà (2n+1).(2n^2-3n+1 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=>...
bn tự làm tiếp nha