Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 6x + 11
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của A = 3
B = 2x2 + 10x - 1
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của B = \(-\frac{5}{2}\)
C = 5x - x2
=> C = -x2 + 5x
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTLN của C = \(\frac{5}{2}\)
Ta có: A = x 2 - 6 x + 11 = x 2 - 2 . 3 x + 9 + 2 = x - 3 2 + 2
Vì x - 3 2 ≥ 0 nên x - 3 2 + 2 ≥ 2
Suy ra: A ≥ 2.
A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3
Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.
\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)
Dấu = xảy ra \(\Leftrightarrow x=3\)
\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)
C = 5 x - x 2 = - x 2 - 5 x = - x 2 - 2 . 5 / 2 x + 5 / 2 2 - 5 / 2 2 = - x - 5 / 2 2 - 25 / 4 = - x - 5 / 2 2 + 25 / 4 V ì - x - 5 / 2 2 ≤ 0 ⇒ - x - 5 / 2 2 + 25 / 4 ≤ 25 / 4
Suy ra: C ≤ 25/4 .
C = 25/4 khi và chỉ khi x - 5/2 = 0 suy ra x = 5/2
Vậy C = 25/4 là giá trị lớn nhất tại x = 5/2 .
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Mình chỉ tìm giá trị chứ không tìm x đâu nhé (đề bài ghi thế)
a)
\(A=x^2-6x+11\\ =x^2-6x+9+2\\ =\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\\ 2\ge2\\ \Rightarrow\left(x-3\right)^2+2\ge2\forall x\\ A\ge2\forall x\\ \Rightarrow A_{min}=2\)
b) B = 2x2 + 10 - 1
B = 2(x2 + 5) - 1
B = 2(x2 + 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{2}\) - 1
B = 2(x + \(\frac{5}{2}\))2 - \(\frac{27}{2}\)
Vậy GTNN của B = \(\frac{-27}{2}\) khi x = \(\frac{-5}{2}\).
c) C = 5x - x2
C = -(x2 - 5x)
C = -(x2 - 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) + \(\frac{25}{4}\)
C = -(x - \(\frac{5}{2}\))2 + \(\frac{25}{4}\)
Vậy GTLN của C = \(\frac{25}{4}\) khi x = \(\frac{5}{2}\).
a) 2
b) 25/4
c) -9/2
a) \(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy AMin = 2 , đạt được khi x = 3
b) \(B=5x-x^2=-x^2+5x=-x^2+5x-\frac{25}{4}+\frac{25}{4}=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy BMax = 25/4 , đạt được khi x = 5/2
c) \(2x-2x^2-5=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(-2\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy CMax = -9/2 , đạt được khi x = 1/2