K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Ta có: A =  x 2 - 6 x + 11  =  x 2 - 2 . 3 x + 9 + 2  = x - 3 2 + 2

Vì x - 3 2  ≥ 0 nên  x - 3 2  + 2 ≥ 2

Suy ra: A ≥ 2.

A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3

Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.

11 tháng 8 2016

\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)

Dấu = xảy ra \(\Leftrightarrow x=3\)

11 tháng 8 2016

\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

8 tháng 10 2019

A=x2 -6x+11

A=x2-6x+9+2

A=(x-3)2+2\(\ge\)2 với mọi x

Dấu "=" xảy ra <=> x=3

Vậy GTNN của A là 2 <=> x=3

8 tháng 10 2019

nếu như ...+6x+11 mới đúng bạn ạ 

24 tháng 8 2016

a) \(x^2\)\(+3x+7\)

=\(x^2\)\(+2.x.\frac{3}{2}\)\(+\frac{9}{4}\)\(+\frac{19}{4}\)

=\(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\)\(\ge0\)

Nên \(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)\(\ge\frac{19}{4}\)

Dấu "=" xảy ra khi:

 \(x+\frac{3}{2}\)\(=0\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy GTNN của \(x^2\)\(+3x+7\) là \(\frac{19}{4}\) khi \(x=-\frac{3}{2}\)

b) \(-9x^2+12x-15\)

=\(-\left(9x^2-12x+15\right)\)

=\(-\left(\left(3x\right)^2-2.3x.2+4+11\right)\)

=\(-\left(\left(3x-2\right)^2+11\right)\)

=\(-\left(3x-2\right)^2-11\)

Vì \(\left(3x-2\right)^2\)\(\ge0\)

Nên \(-\left(3x-2\right)^2-11\le-11\)

Dấu "=" xảy ra khi:

\(3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

Vậy GTLN của \(-9x^2+12x-15\) là \(-11\) khì \(x=\frac{2}{3}\)

c) \(11-10x-x^2\)

=\(-\left(x^2+10x-11\right)\)

=\(-\left(x^2+2.x.5+25-36\right)\)

=\(-\left(\left(x+5\right)^2-36\right)\)

=\(-\left(x+5\right)^2+36\)

Vì \(\left(x+5\right)^2\ge0\)

Nên \(-\left(x+5\right)^2+36\le36\)

Dấu "=" xảy ra khi:

 \(x+5=0\)

\(\Rightarrow x=-5\)

Vậy GTLN \(11-10x-x^2\) là \(36\) khi \(x=-5\)

d)\(x^4+x^2+2\)

=\(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

=\(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)

Nên \(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra khi:

 \(x^2+\frac{1}{2}=0\)

\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Vậy GTNN của \(x^4+x^2+2\) là \(\frac{7}{4}\) khi \(x=\frac{1}{\sqrt{2}}\)

 

 

 

 

 

 

23 tháng 8 2016

a) \(x^2+3x+7=x^2+2.1,5x+1,5^2+4,75=\left(x+1,5\right)^2+4,75\ge4,75\)

Đẳng thức xảy ra khi : \(x+1,5=0\Rightarrow x=-1,5\)

Vậy giá trị nhỏ nhất của x2 + 3x + 7 là 4,75 khi x = -1,5

b) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left[\left(3x\right)^2-2.2.3x+2^2+11\right]\)

\(=-\left[\left(3x-2\right)^2+11\right]=-\left(3x-2\right)^2-11\le-11\)

Đẳng thức xảy ra khi :  \(3x-2=0\Rightarrow x=\frac{2}{3}\)

Vậy giá trị lớn nhất của -9x2 +12x - 15 là -11 khi \(x=\frac{2}{3}\)

23 tháng 8 2016

c) \(11-10x-x^2=-x^2-10x+11=-\left(x^2+10x-11\right)=-\left(x^2+2.5x+5^2-36\right)\)

\(=-\left[\left(x+5\right)^2-36\right]=-\left(x+5\right)^2+36\le36\)

Đẳng thức xảy ra khi : \(x+5=0\Rightarrow x=-5\)

Vậy giá trị lớn nhất của 11 - 10x -x2 là 36 khi x = -5.