Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
b. Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{11}{33}=\frac{1}{3}\)
\(\frac{x}{15}=\frac{1}{3}\Rightarrow x=\frac{1}{3}\cdot15=5\) \(\frac{y}{10}=\frac{1}{3}\Rightarrow y=\frac{1}{3}\cdot10=\frac{10}{3}\)
\(\frac{z}{8}=\frac{1}{3}\Rightarrow z=\frac{1}{3}\cdot8\Rightarrow z=\frac{8}{3}\)
c. Ta thấy: \(\left(x+2\right)^{n+1}\ge0,\left(x+2\right)^{n+11}\ge0\) với mọi x.
Mà \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\Rightarrow x+2\in\left\{0,1,-1\right\}\)
TH1: x + 2 = 0 => x = 0 - 2 => x = -2
TH2: x + 2 = 1 => x = 1 - 2 => x = -1
TH3: x + 2 = -1 => x = -1 - 2 => x = -3
a. Từ giả thiết ta có x > y.
\(2^x-2^y=2^4\Rightarrow2^y\left(2^{x-y}-1\right)=2^4\). Do \(2^{x-y}-1\) không chia hết cho 2 với mọi x khác y nên để thỏa mãn đẳng thức trên thì \(2^{x-y}-1=1\Rightarrow x-y=1\)
Khi đó \(2^y=2^4\Rightarrow y=4\Rightarrow x=5.\)
b . Do vai trò x, y như nhau nên giả sử \(x\ge y.\)
\(2^x+2^y=2^4\Rightarrow2^y\left(2^{x-y}+1\right)=2^4\) Lập luận tương tự ta có \(2^{x-y}+1=1\Rightarrow x=y\).
Khi đó \(2.2^y=2^4\Rightarrow y=3\Rightarrow x=3.\)