Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm của bạn trên sai rồi nhưng đáp số đúng làm lại cho tự vẽ hình lấy :))
Gọi D là tiếp điểm của đường tròn (I) với AB. Ta tính được BC = 15 ( cm )
\(AD=\frac{AB+AC-BC}{2}=\frac{9+12-15}{2}=3\left(cm\right)\)
Gọi N là giao điểm của BI và AC. Ta có:
\(\frac{BI}{BN}=\frac{BD}{BA}=\frac{6}{9}=\frac{2}{3}=\frac{BM}{BG}\Rightarrow\)IG // NM và \(IG=\frac{2}{3}NM\)
Lần lượt tính AN = 4,5 ( cm ) ; AM = 6 ( cm )
Suy ra NM = 1,5 ( cm ) nên IG = 1( cm )
Vậy IG = 1 ( cm )
Gọi J,D thứ tự là trung điểm BC,BA.
Hạ: GE', IE BA.
JD là đường trung bình ABC nên: JD = 1/2AC = 6
JA = 1/2BC = 15/2
AD = 1/2AB = 9/2
AG/AJ = AE'/AD = 2/3 => AE' = 3
Lại có: AE = AC + AB - BC/2 = 3 => E \(\equiv\) E' => G; I; E
=> IG = EG' - IE' = 1 (cm)
*P/s: Sai đâu thì bn sửa nhé*
a) Ta có : AC = AB/tanC = 5/tan30o = \(5\sqrt{3}\) (cm)
BC = AB/sinC = 5/sin30o = 10 (cm)
góc B = 90 độ - góc C = 90 độ - 30 độ = 60 độ
b) AM = 1/2AC = \(\frac{1}{2}.5\sqrt{3}=\frac{5\sqrt{3}}{2}\) (cm)
c) Ta tính được : \(MB=\sqrt{AM^2+AB^2}=\sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2+5^2}=\frac{5\sqrt{7}}{2}\) (cm)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{2}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{3}\) (cm)
\(GM=\frac{1}{3}BM=\frac{1}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{6}\left(cm\right)\)
N ở đâu ???