K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

a) Ta có : AC = AB/tanC = 5/tan30o = \(5\sqrt{3}\) (cm)

BC = AB/sinC = 5/sin30o = 10 (cm)

góc B = 90 độ - góc C = 90 độ - 30 độ = 60 độ

b) AM = 1/2AC = \(\frac{1}{2}.5\sqrt{3}=\frac{5\sqrt{3}}{2}\) (cm)

c) Ta tính được : \(MB=\sqrt{AM^2+AB^2}=\sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2+5^2}=\frac{5\sqrt{7}}{2}\) (cm)

\(\Rightarrow BG=\frac{2}{3}BM=\frac{2}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{3}\) (cm)

\(GM=\frac{1}{3}BM=\frac{1}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{6}\left(cm\right)\)

N ở đâu ???

24 tháng 8 2016

a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm

theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm

góc C = 90 - 30 = 60 độ

b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm

theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)

diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông

24 tháng 8 2016

mk bận quá k lm kịp 2 câu còn lại thông cảm nha 

16 tháng 10 2021

\(a,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{144}{13}\left(cm\right)\\AH=\sqrt{\dfrac{25}{13}\cdot\dfrac{144}{13}}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)

\(b,\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Leftrightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}=23^0\)

\(c,\) Vì AM là trung tuyến ứng ch BC nên \(AM=BM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)

Ta có \(MH=MB-HB=6,5-\dfrac{25}{13}=\dfrac{119}{26}\left(cm\right)\)

Vậy \(S_{AMH}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

16 tháng 10 2021

Hình vẽ:

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

12 tháng 9 2016

A B C H

Ta có: Tam giác ABC vuông và có góc B bằng 30 độ

=> góc C = 60 độ

=> Tam giác ABC là nửa tam giác đều

=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)

=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)

=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)

=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)

b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)

26 tháng 7 2020

A B C K N 5 12

Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.

Bài làm

a) Xét tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}\)

hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)

=> \(BC=\sqrt{169}=13\left(cm\right)\)

=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Xét tam giác ABC và tam giác MNC có:

\(\widehat{BAC}=\widehat{NMC}=90^0\)

\(\widehat{C}\)chung

=> Tam giác ABC ~ tam giác MNC ( g-g )

=> \(\frac{AB}{MN}=\frac{AC}{MC}\)

hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)

b) Xét tam giác ABC vuông tại A

Đường cao AH

=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)

=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)

=> \(\frac{1}{AH^2}=\frac{169}{3600}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )

Xét tam giác AHB vuông tại H có:

Theo Pytago có:

\(BH^2=AB^2-AH^2\)

hay \(BH^2=5^2-\frac{3600}{169}\)

=> \(BH^2=25-\frac{3600}{169}\)

=>\(BH^2=\frac{625}{169}\)

=> \(BH=\frac{25}{13}\)( cm )

Ta có: BH + HC = BC

hay \(\frac{25}{13}+HC=13\)

=> \(HC=13-\frac{25}{13}\)

=> \(HC=\frac{144}{13}\)