Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\)
\(3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{95.98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)
\(3A=\dfrac{24}{49}\Rightarrow A=\dfrac{8}{49}\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\)
\(=\dfrac{1}{2}-\dfrac{1}{98}\)
\(=\dfrac{24}{49}\)
\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)
\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\cdot\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
C = 6/2.5 + 6/5.8 + 6/8.11 +...+ 6/29.32
C = 2.(3/2.5 + 3/5.8 + 3/8.11 + ... + 3/29.32)
C = 2.(1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/29 - 1/32)
C = 2.(1/2 - 1/32)
C = 2.15/32
C = 15/16
Ta có:
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(3n+2\right).\left(3n+5\right)}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{\left(3n+2\right).\left(3n+5\right)}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n+2}-\frac{1}{3n+5}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+5}\right)\)
\(\Rightarrow\frac{1}{6}-\frac{1}{9n+15}\)
Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .
= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .
= 1/2 - 1/ 3n+2 .
= 3n + 2 - 2 / 2 .( 3n+2 ) .
= 3n / 2.(3n+2) .
Đặt A=1/2.5+1/5.8+...+1/(3n-1)(3n+2)
3A=3/2.5+3/5.8+....+3/(3n-1)(3n+2)
3A=1/2-1/5+1/5-1/8+....+1/3n-1-1/3n+2
3A=1/2-1/3n+2
3A=3n/6n+4
A=(3n/6n+4) /3
A=n/6n+4(đpcm)
bài này có tính chất rồi mà