K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

6 tháng 3 2016

Cậu mới thi viuolympic sao mk cũng mới đăng

6 tháng 3 2016

đặt \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{65.68}\right)\)là A

Ax=\(\frac{19}{68}+\frac{7}{34}=\frac{33}{68}\)

3A=\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{11}{8.11}+...+\frac{1}{65.68}\right)\)

3A=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\)

3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\)

3A=\(\frac{1}{2}-\frac{1}{68}=\frac{33}{68}\)

A=33/68:3=11/68

\(\Rightarrow\)33/68:11/68=3

vậy x= 3

6 tháng 3 2016

Trả lời giúp mk nha mk cho 3 h lun nói thietj ó

7 tháng 3 2016

(1/2.5+1/5.8+....+1/65.68)x=19/68+7/34=33/68

(1/2.5+1/5.8+.....+1/65.68).3.x=33/68.3=99/68

(3/2.5+3/5.8+........3/65.68)x =99/68

(1/2-1/68)x=99/68

33/68x=99/68

=>x=3

cho mình nha

23 tháng 2 2017

bai 1:\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\right)x-\frac{7}{34}=\frac{19}{68}\)

=\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{68}\right)x-\frac{7}{34}=\frac{19}{68}\)

\(\Rightarrow\)x=3

bai2:từ giả thiết \(\frac{ab}{bc}=\frac{a}{c}=\frac{-1}{2}va\frac{ab}{ac}=\frac{b}{c}=\frac{3}{4}\)

hay \(\frac{a}{-2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\)\(\left(\frac{a}{-2}\right)^2=\frac{a}{-2}\times\frac{b}{3}=\frac{-6}{-6}=1\)

a=-2 (a<0)

\(\Rightarrow\)a=-2,b=3,c=4

5 tháng 9 2021

Đặt A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\)

\(3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{95.98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)

\(3A=\dfrac{24}{49}\Rightarrow A=\dfrac{8}{49}\)

5 tháng 9 2021

    \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(=\dfrac{1}{2}-\dfrac{1}{98}\)

\(=\dfrac{24}{49}\)

27 tháng 8 2019

\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)

\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)

\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)

\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}\cdot\frac{93}{190}\)

\(=1-\frac{31}{190}\)

\(=\frac{159}{190}\)

27 tháng 8 2019

\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)

\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}.\frac{93}{190}\)

\(=1-\frac{31}{190}\)

\(=\frac{159}{190}\)

22 tháng 9 2016

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

\(x+3=308\)

\(\Rightarrow x=305\)

15 tháng 7 2018

Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .

              = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .

              = 1/2 - 1/ 3n+2 .

              = 3n + 2 - 2 / 2 .( 3n+2 ) .

             = 3n / 2.(3n+2) .