Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{65.68}\right)\)là A
Ax=\(\frac{19}{68}+\frac{7}{34}=\frac{33}{68}\)
3A=\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{11}{8.11}+...+\frac{1}{65.68}\right)\)
3A=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\)
3A=\(\frac{1}{2}-\frac{1}{68}=\frac{33}{68}\)
A=33/68:3=11/68
\(\Rightarrow\)33/68:11/68=3
vậy x= 3
bai 1:\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\right)x-\frac{7}{34}=\frac{19}{68}\)
=\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{68}\right)x-\frac{7}{34}=\frac{19}{68}\)
\(\Rightarrow\)x=3
bai2:từ giả thiết \(\frac{ab}{bc}=\frac{a}{c}=\frac{-1}{2}va\frac{ab}{ac}=\frac{b}{c}=\frac{3}{4}\)
hay \(\frac{a}{-2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\)\(\left(\frac{a}{-2}\right)^2=\frac{a}{-2}\times\frac{b}{3}=\frac{-6}{-6}=1\)
a=-2 (a<0)
\(\Rightarrow\)a=-2,b=3,c=4
Đặt A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\)
\(3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{95.98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)
\(3A=\dfrac{24}{49}\Rightarrow A=\dfrac{8}{49}\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\)
\(=\dfrac{1}{2}-\dfrac{1}{98}\)
\(=\dfrac{24}{49}\)
\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)
\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\cdot\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(\Rightarrow x=305\)
Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .
= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .
= 1/2 - 1/ 3n+2 .
= 3n + 2 - 2 / 2 .( 3n+2 ) .
= 3n / 2.(3n+2) .
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa