K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

b. số cách chọn 2 quả cầu màu đỏ và một quả cầu màu xanh là C42.C51= 30

Chọn A

18 tháng 5 2017

Tổ hợp - xác suất

22 tháng 2 2019

Chọn A

Xếp ngẫu nhiên 6 quả cầu đôi một khác nhau thành một hàng ngang có 6! cách xếp.

Gọi A là biến cố “2 quả cầu màu trắng không xếp cạnh nhau”.

Suy ra A ¯  là biến cố “2 quả cầu màu trắng xếp cạnh nhau”.

Ta có n( A ¯ ) = 2.5!. Vậy xác suất cần tìm là  

23 tháng 2 2019

a. Số cách chọn 3 quả cầu trong 9 quả là C93=84

Chọn B

13 tháng 3 2019

c. Số cách chọn 3 quả cầu trong đó có ít nhất một quả cầu đỏ là:

C41.C52+C42.C51+C43=74

Chọn D

15 tháng 8 2019

Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra

Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh.

 Xác suất trong trường hợp này là

Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh.

Xác suất trong trường hợp này là

Ta thấy 2 biến cố B và C là xung khắc nên

 

→Đáp án A.

NV
10 tháng 1 2022

Không gian mẫu: \(C_9^3\)

Có 2 cách lấy thỏa mãn: (2 quả số 1, một quả số 3) hoặc (1 quả số 1, hai quả số 2)

\(\Rightarrow C_2^2.C_4^1+C_2^1.C_3^2\) cách

Xác suất: \(P=\dfrac{C_2^2.C_4^1+C_2^1.C_3^2}{C_9^3}=...\)

23 tháng 4 2018

Kí hiệu

A: "Quả lấy từ hộp thứ nhất màuđỏ" ;

B: "Quả lấy từ hộp thứ hai màuđỏ".

Ta thấy A và B độc lập.

a) Cần tính P(A ∩ B).

Ta có: P(A ∩ B) = P(A). P(B) = 0,24

b) Cần tính xác suất của C   =   ( A   ∩   B )   ∪   ( A   ∩   B )

Do tính xung khắc và độc lập của các biến cố, ta có

P ( C )   =   P ( A ) .   P ( B )   +   P ( A ) .   P ( B )   =   0 , 48

 

c) Cần tính P ( C ) . Ta có P ( C ) = 1 − P(C) = 1 − 0,48 = 0,52