K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

29 tháng 1 2017

21 tháng 10 2017

18 tháng 5 2019

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

NV
28 tháng 1 2021

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\) 

Do hệ số bậc cao nhất của x dương nên:

- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)

- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)

Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất

Từ BBT ta thấy \(x=0\) là cực tiểu

Vậy \(-3\le m< 3\)

24 tháng 6 2021

cho em hỏi là tại sao m≠0 mà đkxđ của m lại là -3<m<3 ạ ?

2 tháng 11 2017

Đáp án D

9 tháng 7 2018

Chọn C

Ta có 

Nhận thấy f'(x) đổi dấu qua 2 nghiệm x = ± 2 nên hàm số y = f(x) có 2 điểm cực trị.

11 tháng 12 2018

Suy ra số điểm cực tiểu của hàm số là 4

21 tháng 8 2019