K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

\(tan\alpha=3\)

\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)

\(\Rightarrow cos\alpha=\pm\sqrt{\dfrac{1}{1+tan^2\alpha}}=\pm\sqrt{\dfrac{1}{1+3^2}}=\pm\dfrac{\sqrt{10}}{10}\)

\(\Rightarrow A\)

3 tháng 3 2021

`tan a =3 <=> (sina)/(cosa) =3 <=> sina=3cosa`

Có: `sin^2a+cos^2a =1`

`<=> (3cosa)^2 + cos^2a =1`

`<=> 10cos^2a =1`

`<=> cosa = \pm \sqrt10/10`

`=>` A.

NV
3 tháng 3 2021

\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)

3 tháng 3 2021

`sin^2x+cos^2x=1`

`<=>sin^2x+(1/2)^2=1`

`<=> sinx=\pm \sqrt3/2`

• `sinx=\sqrt3/2 => P=3. (\sqrt3/2)^2 +1=13/4`

• `sinx=-\sqrt3/2 => P = 3.(-\sqrt3/2) +1=13/4`

`=>` A.

NV
3 tháng 3 2021

\(P=3sin^2x+1=3\left(1-cos^2x\right)+1=3\left(1-\dfrac{1}{4}\right)+1=\dfrac{13}{4}\)

NV
20 tháng 6 2020

\(A=\frac{\frac{sin^2x}{cos^2x}+\frac{sinx.cosx}{cos^2x}+\frac{5}{cos^2x}}{\frac{3sin^2x}{cos^2x}-\frac{2cos^2x}{cos^2x}}=\frac{tan^2x+tanx+5\left(1+tan^2x\right)}{3tan^2x-2}\)

\(=\frac{\left(-3\right)^2-3+5\left[1+\left(-3\right)^2\right]}{3.\left(-3\right)^2-2}=...\)

NV
26 tháng 2 2021

\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{13^2+15^2-14^2}{2.13.15}=\dfrac{33}{65}\)

\(\Rightarrow B\simeq59^029'\)

NV
7 tháng 3 2021

\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)

\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)

\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)

\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)

10 tháng 6 2019

Ta có  cot 60 0 = 1 3

Lại có:  -   300 o   =   60 o   –   360 o  

n ê n   c o t (   - 300 o )   = cot 60 0 = 1 3

Đáp án A