K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LM
14 tháng 4 2019
1.
\(\frac{\pi}{2}< x< \pi\\ \Rightarrow cosx< 0,sinx>0,cotx< 0\)
\(cotx=\frac{1}{tanx}=\frac{-1}{3}\)
\(1+tan^2x=\frac{1}{cos^2x}\\ \Rightarrow cosx=\sqrt{\frac{1}{1+tan^2}}=\sqrt{\frac{1}{1+9}}=-\frac{\sqrt{10}}{10}\)
\(sinx=\sqrt{1-cos^2x}=\sqrt{1-\frac{10}{100}}=\frac{3\sqrt{10}}{10}\)
NV
Nguyễn Việt Lâm
Giáo viên
18 tháng 3 2021
\(C=180^0-\left(A+B\right)=75^0\)
Áp dụng định lý hàm sin:
\(\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow c=\dfrac{b.sinC}{sinB}=\dfrac{8.sin75^0}{sin45^0}=4+4\sqrt{3}\)
\(tan\alpha=3\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos\alpha=\pm\sqrt{\dfrac{1}{1+tan^2\alpha}}=\pm\sqrt{\dfrac{1}{1+3^2}}=\pm\dfrac{\sqrt{10}}{10}\)
\(\Rightarrow A\)
`tan a =3 <=> (sina)/(cosa) =3 <=> sina=3cosa`
Có: `sin^2a+cos^2a =1`
`<=> (3cosa)^2 + cos^2a =1`
`<=> 10cos^2a =1`
`<=> cosa = \pm \sqrt10/10`
`=>` A.