Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Sử dụng tỉ số cosC và sinC, tính được
a = 20 3 3 cm, c = 10 3 3 cm và B ^ = 60 0
b, Sử dụng tỉ số sinB và cosB, tính được:
b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm
c, Sử dụng định lý Pytago và tỉ số sinB, tính được:
c = 5 5 cm, sinB = 10 15 => B ^ ≈ 41 , 8 0 , C ^ ≈ 48 , 2 0
d, Tương tự c) ta có
a = 193 cm, tanB = 12 7 => B ^ ≈ 59 , 7 0 , C ^ = 30 , 3 0
Câu 1:
\(\sin a=\sqrt{1-0.8^2}=0.6\)
\(\tan a=\dfrac{0.6}{0.8}=\dfrac{3}{4}\)
Câu 2:
a: a=21cm nên BC=21cm
b=18cm nên AC=18cm
\(AB=\sqrt{21^2+18^2}=3\sqrt{85}\left(cm\right)\)
Xét ΔCAB vuông tại C có
\(\sin A=\dfrac{CB}{AB}=\dfrac{21}{3\sqrt{85}}\)
nên \(\widehat{A}\simeq49^0\)
=>\(\widehat{B}=41^0\)
b: \(\widehat{B}=90^0-30^0=60^0\)
b=10cm nên AC=10cm
Xét ΔABC vuông tại C có
\(\cos A=\dfrac{AC}{AB}\)
nên \(AB=10:\dfrac{\sqrt{3}}{2}=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
=>\(BC=\sqrt{AB^2-AC^2}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
a, \(AB=\tan C\cdot AC=\dfrac{\sqrt{3}}{3}\cdot16=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{32\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)
(Lưu ý: ΔABC vuông tại A nên ∠ B + ∠ C = 90 °
Giải tam giác tức là đi tìm số đo các cạnh và các góc còn lại.)
a)
∠ B = 90 o - ∠ C = 90 ° - 30 ° = 60 °
c = b . t g C = 10 . t g 30 ° ≈ 5 , 77 ( c m )
b)
∠ B = 90 ° - ∠ C = 90 ° - 45 ° = 45 °
=> ΔABC cân => b = c = 10 (cm)
c)
∠ B = 90 o - ∠ C = 90 ° - 35 ° = 55 ° b = a sin B = 20 . sin 35 ° ≈ 11 , 47 ( c m ) c = a sin C = 20 . sin 55 ° ≈ 16 , 38 ( c m )
d)
(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.
Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.
hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))