Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)
1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)
CH=5,4(cm)
2: \(BC=\sqrt{2+2}=2\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)
\(BH=CH=AH=1\left(cm\right)\)
1: \(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\sqrt{20^2-12^2}=16\left(cm\right)\)
CH=BC-BC=9(cm)
2: \(BC=10cm\)
\(AC=5\sqrt{3}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{10}=2.5\left(cm\right)\)
CH=BC-BH=7,5(cm)