K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

1

B

6

B

11

C

16

A

21

D

2

C

7

A

12

A

17

B

22

D

3

A

8

B

13

B

18

C

23

C

4

B

9

B

14

A

19

A

24

A

5

D

10

C

15

D

20

D

25

C

NV
10 tháng 2 2020

\(I=\int\limits^1_0\frac{x^{2\left(n-2\right)}}{\left(1+x^2\right)^n}.xdx\)

Đặt \(1+x^2=t\Rightarrow xdx=\frac{1}{2}dt\)

\(\Rightarrow I=\frac{1}{2}\int\limits^2_1\frac{\left(t-1\right)^{n-2}}{t^n}dt=\frac{1}{2}\int\limits^2_1\left(\frac{t-1}{t}\right)^{n-2}.\frac{1}{t^2}dt=\frac{1}{2}\int\limits^2_1\left(1-\frac{1}{t}\right)^{n-2}.\frac{1}{t^2}dt\)

Đặt \(1-\frac{1}{t}=u\Rightarrow\frac{1}{t^2}dt=du\)

\(\Rightarrow I=\frac{1}{2}\int\limits^{\frac{1}{2}}_0u^{n-2}du=\frac{1}{2\left(n-1\right)}u^{n-1}|^{\frac{1}{2}}_0=\frac{1}{\left(n-1\right)2^n}\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:


Kẻ \(SH\perp AB\). Do \((SAB)\perp (ABCD)\Rightarrow SH\perp (ABCD)\)

Tam giác $SAB$ đều có đường cao $SH$ nên dễ tính \(SH=\frac{\sqrt{3}a}{2}\)

Kẻ \(HK\perp AD\)

Khi đó, \(\angle ((SAC),(ABCD))=\angle (HK,SK)=\angle HKS=60^0\)

\(\Rightarrow \frac{HK}{HS}=\cot 30^0=\sqrt{3}\Rightarrow HK=\sqrt{3}SH=\frac{3}{2}a\)

Tam giác vuông tại $K$ là $HAK$ có cạnh huyền \(AH=\frac{1}{2}a< HK\) nên bài toán vô lý.

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Câu 12:

Để hàm số $y$ đồng biến trên từng khoảng xác định thì:

\(y'=\frac{m+1}{(x+1)^2}> 0, \forall x\in (-\infty;-1)\cup (-1;+\infty)\)

\(\Leftrightarrow m> -1\)

Đáp án B.

AH
Akai Haruma
Giáo viên
17 tháng 5 2021

Câu 13:

$y=x^3-3m^2x$

$y'=3x^2-3m^2$. Để $y$ đồng biến trên $\mathbb{R}$ thì $y'\geq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow x^2\geq m^2, \forall x\in\mathbb{R}$

$\Leftrightarrow m^2\leq min (x^2)=0$. Điều này xảy ra khi $m=0$

Đáp án D.

11 tháng 8 2021

B, Đồ thị y thì nhìn vào dáng điệu, đồ thị y' thì chú ý trục hoành

Chọn B

12 tháng 3 2020

 không thấy hết

7 tháng 11 2021

x-26,789 =12,34+33,45

x-26,789=45,79

x=45,79+26,789

x=72,579

28 tháng 1 2023

\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)

 

We substitute :

\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)

Then, 

\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)

 

Finally,

\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)

 

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

ĐK: \(x\in (0;+\infty)\)

\(x^{\log_29}=x^2.3^{\log_2x}-x^{\log_23}\)

\(\Leftrightarrow x^{2\log_23}=x^2.x^{\log_23}-x^{\log_23}=x^{\log_23+2}-x^{\log_23}\)

\(\Leftrightarrow x^{\log_23}(x^{\log_23}-x^2+1)=0\). Do $x\neq 0$ nên:

\(x^2-x^{\log_23}=1(*)\)

Nếu \(0< x\leq 1\Rightarrow x^2\leq 1; x^{\log_23}>0\Rightarrow x^2-x^{\log_23}< 1\) (vô lý). Do đó \(x\in (1;+\infty)\)

Đặt \(f(x)=x^2-x^{\log_23}\Rightarrow f'(x)=2x-\log_23x^{\log_23-1}\)

\(=x^{\log_23-1}(2x^{2-\log_23}-\log_23)>x^{\log_23-1}(2.1-\log_23)>0\)với mọi $x\in (1;+\infty)$ nên $f(x)$ đồng biến với mọi $x\in (1;+infty)$. Mà ở vế phải thì $1$ là hàm hằng. Do đó $(*)$ chỉ có nghiệm duy nhất.

Dễ thấy $x=2$ là nghiệm duy nhất của pt