K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

đề đây à \(\int^{x^2+y^2+xy=37}_{\int^{x^2+z^2+xz=38}_{y^2+z^2+yz=19}}\)
 

31 tháng 3 2016

Giúp tớ đi

31 tháng 1 2019

Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3

7 tháng 7 2023

 a) Ta thấy \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\) và \(x^2+y^2=\left(x+y\right)^2-2xy\) nên nếu đặt \(x+y=S,xy=P\) thì ta có hệ: \(\left\{{}\begin{matrix}S^3-3SP=2\\S^2-2P=2\end{matrix}\right.\) . Từ pt (2) suy ra \(P=\dfrac{S^2-2}{2}\). Thay vào (1), ta có \(S^3-3S.\dfrac{S^2-2}{2}=2\) \(\Leftrightarrow-S^3+6S-4=0\) hay \(S^3-6S+4=0\)

 Đến đây ta dễ dàng nhẩm ra được \(S=2\). Do đó ta lập sơ đồ Horner:

\(x\) 1 0 -6 4
\(2\) 1 2 -2 0

Nghĩa là từ \(S^3-6S+4=0\) ta sẽ có \(\left(S-2\right)\left(S^2+2S-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}S=2\\S=-1\pm\sqrt{3}\end{matrix}\right.\).

 Nếu \(S=2\) thì \(P=\dfrac{S^2-2}{2}=1\). Ta thấy \(S^2-4P=0\) nên x, y sẽ là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow\left(X-1\right)^2=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\).

 Nếu \(S=-1+\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1-\sqrt{3}\). Ta thấy \(S^2-4P>0\) nên x, y là nghiệm của pt \(X^2-\left(\sqrt{3}-1\right)X+1-\sqrt{3}=0\)\(\Delta=2\sqrt{3}\) nên \(X=\dfrac{\sqrt{3}-1\pm\sqrt{2\sqrt{3}}}{2}\) hay \(\left(x;y\right)=\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-2\sqrt{3}}{2}\right)\) và hoán vị của nó. 

 Nếu \(S=-1-\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1+\sqrt{3}\). Mà \(S^2-4P=-2\sqrt{3}< 0\) nên không tìm được nghiệm (x; y)

 Như vậy hệ phương trình đã cho có các cặp nghiệm \(\left(1;1\right);\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2}\right)\)\(\left(\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1+2\sqrt{3}}{2}\right)\)

b) Ta thấy \(x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)  nên nếu đặt \(S=x+y,P=xy\) thì ta có hệ \(\left\{{}\begin{matrix}S^3-3SP+P=3\\S+P=3\end{matrix}\right.\), suy ra \(P=3-S\) 

\(\Rightarrow S^3-3S\left(3-S\right)+3-S=3\)

\(\Leftrightarrow S^3-10S+3S^2=0\)

\(\Leftrightarrow S\left(S^2+3S-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}S=0\\S=2\\S=-5\end{matrix}\right.\)

 Nếu \(S=0\) thì \(P=3\). Khi đó vì \(S^2-4P< 0\) nên không tìm được nghiệm (x; y)

 Nếu \(S=2\) thì suy ra \(P=1\). Ta có \(S^2-4P=0\) nên x, y là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\)

 Nếu \(S=-5\) thì suy ra \(P=8\). Ta có \(S^2-4P< 0\) nên không thể tìm được nghiệm (x; y).

 Như vậy hpt đã cho có nghiệm duy nhất \(\left(1;1\right)\)

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

30 tháng 5 2019

\(\left\{{}\begin{matrix}x+y+xy=-1\left(1\right)\\x^2+y^2-xy=7\end{matrix}\right.\)\(\Rightarrow x^2+y^2+x+y=6\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+x+y=6\)

\(\Leftrightarrow xy=\frac{\left(x+y\right)^2+x+y-6}{2}\)

Thay vào (1):\(2x+2y+\left(x+y\right)^2+x+y-6=-2\)

\(\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}xy=-2\\xy=3\end{matrix}\right.\)

Vậy x,y là nghiệm của pt:\(\left[{}\begin{matrix}X^2-X-2=0\\X^2+4X+3=0\end{matrix}\right.\)

Đến đây tự tìm x,y.

30 tháng 5 2019

Cảm ơn bạn nhiều

NV
12 tháng 12 2020

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=6\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-6=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=-3\\x+y=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-3\\xy=5\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm của:

\(t^2+3t+5=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=2\\xy=0\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)

16 tháng 3 2016

lấy vế trên trừ dưới bạn có 2 kết quả 

thế từng kết quả vào là ra 

29 tháng 5 2017

điều kiện xy \(\ge\) 0

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=7\\x^2+y^2+xy=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+y\right)-\sqrt{xy}=7\\\left(x+y\right)^2-xy=133\end{matrix}\right.\)

đặc x + y = a ; xy = b

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-\sqrt{b}=7\\a^2-b=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\\left(7+\sqrt{b}\right)^2-b=133\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\49+14\sqrt{b}+b-b=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\14\sqrt{b}=84\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\\sqrt{b}=6\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=13\\b=36\end{matrix}\right.\)

\(\Rightarrow\) x + y = 13 ; xy = 36

\(\Rightarrow\) x ; y là nghiệm của phương trình : x2 - 13x + 36 = 0

bấm máy ta có : x = 4 ; x = 9

vậy x = 4 ; y = 9 hoặc x = 9 ; y = 4

xy = 36 (tmđk)