K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Với PT bậc 2, nếu \(z_1\) là một nghiệm phức thì nghiệm \(z_2\) còn lại chính là số phức liên hợp của \(z_1\). Khi đó áp dụng hệ thức Viete:

\(\left[{}\begin{matrix}W=\dfrac{z_1+2016^{2017}}{z_2+1}=\dfrac{z_1+z_1z_2}{z_2+1}=z_1\\W=\dfrac{z_2+2016^{2017}}{z_1+1}=\dfrac{z_2+z_1z_2}{z_1+1}=z_2\end{matrix}\right.\)

\(z_1,z_2\) là hai số liên hợp của nhau nên có phần thực như nhau. Do đó phần thực của \(W\) chính bằng \(\frac{z_1+z_2}{2}=1\) (theo hệ thức Viete)

Đáp án B

24 tháng 11 2018

3 tháng 3 2019

Chọn C.

Đặt   t = f ( x ) → d t = f ' x d x . Đổi cận:  x = 2016 → t = f ( 2016 ) = a x = 2017 → t = f ( 2017 ) = b

Khi đó 

24 tháng 9 2017

1

B

6

B

11

C

16

A

21

D

2

C

7

A

12

A

17

B

22

D

3

A

8

B

13

B

18

C

23

C

4

B

9

B

14

A

19

A

24

A

5

D

10

C

15

D

20

D

25

C

NV
2 tháng 9 2020

ĐKXĐ: \(x\ge-2\)

Hàm \(f\left(x\right)=\sqrt{2x+4}+\sqrt[3]{3x+1}\)\(f'\left(x\right)=\frac{1}{\sqrt{2x+4}}+\frac{1}{\sqrt[3]{\left(3x+1\right)^2}}>0\) với mọi x thuộc khoảng xác định nên hàm đồng biến

\(\Rightarrow\) Nghiệm của BPT là \([-2;a)\)

Trong đó a là nghiệm thực của pt: \(\sqrt{2x+4}+\sqrt[3]{3x+1}-3+\sqrt{\frac{2016}{2017}}=0\)

Chắc chắn rằng ngay cả người ra đề cũng không thể giải ra nghiệm chính xác của pt trên khi mà dạng của nó như dưới đây :)

Hỏi đáp Toán

NV
17 tháng 11 2018

a/ ĐK x>0

\(log_{2017}x+log_{2016}x=0\Leftrightarrow\dfrac{lnx}{ln2017}+\dfrac{lnx}{ln2016}=0\)

\(\Leftrightarrow lnx\left(\dfrac{1}{ln2017}+\dfrac{1}{ln2016}\right)=0\Leftrightarrow lnx=0\Rightarrow x=1\)

b/ ĐK \(\left\{{}\begin{matrix}x-1>0\\x-1\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)

\(x^3-5x^2+6x=0\Leftrightarrow x\left(x^2-5x+6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=2\left(l\right)\\x=3\end{matrix}\right.\) \(\Rightarrow x=3\)

17 tháng 11 2018

Em cảm ơn nhiều ạ.

NV
27 tháng 3 2019

\(y'=2016x^{2015}.\left(x^2+1\right)^{2017}+2017\left(x^2+1\right)^{2016}.2x.x^{2016}\)

\(y'=x^{2015}\left(x^2+1\right)^{2016}\left(2016\left(x^2+1\right)+2017.2x^2\right)\)

\(y'=x^{2015}\left(x^2+1\right)^{2016}\left(2016x^2+2016+2017.2x^2\right)\)

\(y'=0\Rightarrow x=0\)

Hàm số có 1 cực trị duy nhất

1 tháng 9 2017

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B

20 tháng 9 2017

ý D có thể xảy ra vì gt chỉ cho h/s đồng biến trên (0;+\(\infty\))