Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+\left(96^2-95^5\right)+...+\left(2^2-1^2\right)\\ =\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+\left(96-95\right).\left(96+95\right)+...+\left(2-1\right).\left(2+1\right)\\ =100+99+98+97+96+95+...+2+1\\ =50.101=5050\)
Ta có:
A=(100^2 -99^2)+(98^2 - 97^2)+(96^2 - 95^2)+.........+(2^2 - 1)
=(100-99)(100+99) + (98-97)(98+97) + (96-95)(96+95)+........+(2-1)(2+1)
=100+99+98+97+......+2+1=5050
Ở đây mình nhóm các hạng tử rồi AD hằng đẳng thức A^2 - B^2 = (A-B)(A+B)
Giải:
\(100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+\left(96^2-95^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+\left(96-95\right)\left(96+95\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=\left(100+99\right)+\left(98+97\right)+\left(96+95\right)+...+\left(2+1\right)\)
\(=100+99+98+97+96+95+...+2+1\)
\(=\dfrac{\left(100-1+1\right).\left(100+1\right)}{2}=5050\)
Vậy ...
Chúc bạn học tốt!
Ta có :
\(100^2-99^2+98^2-97^2+96^2-95^2+......+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+\left(96-95\right)\left(96+95\right)+.....+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+96+95+......+2+1\)
\(=\dfrac{100.\left(100+1\right)}{2}=5050\)
\(P=100^2-99^2+...+...2^2-1^2\)
\(=\left(\left(100^2-1^2\right)+\left(-99^2+2^2\right)\right)+...+\left(\left(52^2-49^2\right)+\left(-51^2+50^2\right)\right)\)
\(=\left(101.99-101.97\right)+...+\left(101.3-101.1\right)\)
\(=2.101+...+2.101=25.2.101=5050\)
PS: Ta chia được 25 nhóm như trên
P=5050