K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(a,\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2.\left(x-1\right)}+\dfrac{-2x}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)}{2.\left(x-1\right).\left(x+1\right)}+\dfrac{\left(-2x\right).x}{x.\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)-2x^2}{x.\left(x+1\right)\left(x-1\right)}\)

25 tháng 11 2022

b: \(=\dfrac{y^2-12y+24}{6y\left(y-6\right)}\)

c: \(=\dfrac{12-2x+3x}{2x\left(x+3\right)}=\dfrac{x+12}{2x\left(x+3\right)}\)

10 tháng 11 2017

a) \(\dfrac{2}{x+3}+\dfrac{1}{x}\) [ MTC: x(x+3) ]

\(=\dfrac{x.2}{x\left(x+3\right)}+\dfrac{1\left(x+3\right)}{x\left(x+3\right)}\)

\(=\dfrac{2x+x+3}{x\left(x+3\right)}\)

\(=\dfrac{3x+3}{x\left(x+3\right)}\)

\(=\dfrac{3\left(x+1\right)}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)

\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\) \(\left[MTC:2\left(x-1\right)\left(x+1\right)\right]\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-2x.2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x^2+2x+1\right)-4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x^2-2x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)}{2\left(x+1\right)}\)

11 tháng 11 2017

a) Ta có :

\(\dfrac{2}{x+3}+\dfrac{1}{x}=\dfrac{2x+x+3}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)-2x.2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{-3x+1}{2\left(x-1\right)\left(x+1\right)}\)

c) \(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12+36}{6y\left(y-6\right)}=\dfrac{y^2-24}{6y\left(y-6\right)}\)

d) \(\dfrac{6+x}{x+3x}+\dfrac{3}{2x+6}=\dfrac{6+x}{4x}+\dfrac{3}{2\left(x+3\right)}\)

\(=\dfrac{\left(6+x\right)\left(2x+6\right)+12x}{8x\left(x+3\right)}\)(Đề câu này phải sửa thành\(\dfrac{6+x}{x^2+3x}chứ\)) ???

1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)

\(\Leftrightarrow5x+20+12x-28=7x+2\)

\(\Leftrightarrow17x-7x=2+8=10\)

hay x=1

2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)

\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)

\(\Leftrightarrow6x+4-12x=-3x+3\)

\(\Leftrightarrow-6x+3x=3-4\)

hay \(x=\dfrac{1}{3}\)

3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)

\(\Leftrightarrow4x-12-x-2=6x-3\)

\(\Leftrightarrow3x-14-6x+3=0\)

\(\Leftrightarrow-3x=11\)

hay \(x=-\dfrac{11}{3}\)

4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)

\(\Leftrightarrow3x-6-8x-12=x+6\)

\(\Leftrightarrow-5x-x=6+18\)

hay x=-4

5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)

\(\Leftrightarrow6x-3+2x-6=-1\)

\(\Leftrightarrow8x=8\)

hay x=1

a) Ta có: \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)}{6\left(x-2\right)}-\dfrac{3\left(x-2\right)}{6\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{6\left(x-2\right)}\)

Suy ra: \(2x+5-3x+6=6x-9\)

\(\Leftrightarrow-x+11-6x+9=0\)

\(\Leftrightarrow20-7x=0\)

\(\Leftrightarrow7x=20\)

hay \(x=\dfrac{20}{7}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{20}{7}\right\}\)

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)

15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

29 tháng 12 2021

c: \(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}\cdot\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}=\dfrac{-2}{x^2}\)

1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow2x-8+12x=4x-2\)

\(\Leftrightarrow10x=6\)

hay \(x=\dfrac{3}{5}\)

2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)

\(\Leftrightarrow15x-6-30=10-20x\)

\(\Leftrightarrow35x=46\)

hay \(x=\dfrac{46}{35}\)

3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)

\(\Leftrightarrow3x-6-4=6x-6\)

\(\Leftrightarrow-3x=4\)

hay \(x=-\dfrac{4}{3}\)

11 tháng 8 2021

1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)

\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)