Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 - a = a ( a - 1 )
mà a và a-1 là 2 số liên tiếp
=> 1 trong 2 số là số chẵn
=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2
Ta có : \(a^2-a=a\left(a-1\right)\)
Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên
\(a\left(a-1\right)⋮2\)
+ \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :
\(a\left(a-1\right)\left(a+1\right)⋮3\)
+ \(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)
\(\Rightarrow a^5-a⋮5\)
Ta thấy \(n^2+n+1=n\left(n+1\right)+1\)
\(n\left(n+1\right)\) chỉ có tận cùng là 0 , 2, 4 nên \(n^2+n+1\) chỉ có tận cùng là 1, 3, 7.
Như vậy \(n^2+n+1\) không chia hết cho 10, từ đó suy ra nó không chia hết cho 2010.
Vậy không tìm được số tự nhiên n sao cho \(n^2+n+1\) chia hết 2010.
Chúc em học tốt ^^
Đơn giản quá chừng.
2010 chia hết cho 2 (1)
\(2009^{2010}=2009.2009....2009\)(2010 thừa số 9). Vì không có thừa số nào chẵn nên tích trên hay nói cách khác là \(2009^{2010}\) không chia hết cho 2 (2)
Kết hợp giữa (1) và (2) ta được 2009^2010 ko chia hết cho 2010
Vì 2010 chia hết cho 2
mà 2009 ^2010 không chia hết cho 2
2009^2010 k chia hết cho 2010
Do 2009 và 2010 là 2 số tự nhiên liên tiếp => (2009;2010)=1
=> (20092010; 2010) = 1
=> 20092010 không chia hết cho 2010 ( đpcm)
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7
hình như bạn sai đề
2009^2008+2011^2010
=(2009^2)^1004+(2011^2)^1005
=....1^1004+....1^1005
=...1+...1=...2 không chia hết cho 2010
bạn xem lại đề