Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2009^2008+2011^2010
=(2009^2)^1004+(2011^2)^1005
=....1^1004+....1^1005
=...1+...1=...2 không chia hết cho 2010
bạn xem lại đề
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
Chứng minh rằng:
chia hết cho 2010
+ 1) + ( – 1)
= (2009 + 1)( - …) + (2011 – 1)( + …)
= 2010( + …) chia hết cho 2010
\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)
Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.
\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)
Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)
Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)