Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $x$ chia hết cho $3$ thì hiển nhiên $B=x(x+1)(2x+1)\vdots 3$
Nếu $x$ chia $3$ dư $1$ thì đặt $x=3k+1$ với $k\in\mathbb{N}$
$2x+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow B=x(x+1)(2x+1)\vdots 3$
Nếu $x$ chia $3$ dư $2$ thì đặt $x=3k+2$ với $k\in\mathbb{N}$
$x+1=3k+2+1=3(k+1)\vdots 3$
$\Rightarrow B=x(x+1)(2x+1)\vdots 3$
Vậy $B=x(x+1)(2x+1)\vdots 3$ với mọi $x\in\mathbb{N}$
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Lời giải:
Điều kiện: $x\neq 3$
Để $A=\frac{2(x-3)+5}{3-x}=-2+\frac{5}{3-x}$ nguyên thì $\frac{5}{3-x}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi $3-x$ là ước của $5$
$\Rightarrow 3-x\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in\left\{4; 2; 8; -2\right\}$ (thỏa mãn)
a: Trường hợp 1: x=3k
\(\Leftrightarrow A=\left(3k+3\right)\left(3k+7\right)\left(3k+11\right)⋮3\)
Trường hợp 2: x=3k+1
\(\Leftrightarrow A=\left(3k+4\right)\left(3k+8\right)\left(3k+12\right)⋮3\)
Trường hợp 3: x=3k+2
\(\Leftrightarrow A=\left(3k+5\right)\left(3k+9\right)\left(3k+13\right)⋮3\)