Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
\(a.\)
\(A=9x^2-6xy+2y^2+1\)
\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)
\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)
\(b.\)
\(B=x^2-2x+y^2+4y+6\)
\(B=x^2-2x+1+y^2+4y+4+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
\(c.\)
\(C=x^2-2x+2\)
\(C=x^2-2x+1+1\)
\(C=\left(x-1\right)^2+1\ge1\)
a) A=9x2-6xy+2y2+1
A=(3x)2-2.3x.y+y2+y2+1
A=(3x-y)2+(y2+1)≥0
Câu b, c tương tự câu a
Ta có : 9x2 - 6x + 5
= (3x)2 - 6x + 1 + 4
= (3x - 1)2 + 4
Mà : (3x - 1)2 \(\ge0\forall x\)
Nên : (3x - 1)2 + 4 \(\ge4\forall x\)
Suy ra : (3x - 1)2 + 4 \(>0\forall x\)
Vậy biểu thức sau luôn luôn dương
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)
=> Chưa thể khẳng định A dương
\(B=9x^2-6xy+2y^2+1\)
\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)
\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(C=x^2-2x+y^2+4y+6\)
\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)