Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
a) Rút gọn P = 3 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
b) Rút gọn Q = 9 Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.
a)P=x(2x+1)-x2(x+2)+x3-x+3
P=2x2+x-x3-2x2+x3-x+3
P=(2x2-2x2)+(x-x)+(-x3+x3)+3
P= 0 + 0 + 0 +3
P=3
Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)
Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x