K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n  N)

Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3

Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3

Suy ra 111...11 . 1000...05 chia hết cho 3

Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1

Vậy N là số chính phương. 

27 tháng 11 2021

\(C=\frac{999...9}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 9 và 1995 chữ số 0)

\(C=\frac{1000...0-1}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 0)

\(C=\frac{10^{1995}-1}{9}.\left(10^{1995}+5\right)+1\)

\(C=\frac{\left(10^{1995}\right)^2+4.10^{1995}-5}{9}+1=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}-\frac{5}{9}+1\)

\(C=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}+\left(\frac{2}{3}\right)^2=\left(\frac{10^{1995}}{3}+\frac{2}{3}\right)^2\) Là số chính phương

8 tháng 1 2016

N = 111...1 x 10...0005 có 2 chữ số tận cùng là 55 + 1 =......56

Mà số chính phương có chữ số tận cùng là 6 thì chữ số hàng chục là số lẻ.

Ở đây chữ số hàng chục là 5 => N là số chính phương

12 tháng 6 2015

Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n \(\in\) N)

Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3

Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3

Suy ra 111...11 . 1000...05 chia hết cho 3

Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1

Vậy N là số chính phương. 

12 tháng 6 2015

N=111...1{1995 số 1} . 1000...05{1994 số 0}+1

  = \(\frac{\left(10^{1995-1}\right)}{9}.\left(10^{1995}+5\right)+1\)

  = \(\frac{10^{1995}.10^{1995}-1.10^{1995}+5.10^{1995}-5}{9}+1\)

  = \(\frac{10^{1995.2}+4.10^{1995}+4}{9}\)

  = \(\frac{\left(10^{1995}\right)^2+4.10^{1995}+4}{9}\)

  = \(\frac{\left(10^{1995}\right)^2+2.2.10^{1995}+2^2}{9}\)

  = \(\frac{\left(10^{1995}+2\right)^2}{9}=\left(\frac{10^{1995}+2}{3}\right)^2\)

Nhận thấy: 101995+2 có tổng các chữ số là: 1+0+0+0+...+0{1995 số 0}+2

Ta có: tổng các chữ số của 101995+2 chỉ có 1 chữ số 1 và 1 chữ số 2, còn lại là số 0.

=> tổng các chữ số của 101995+2 = 3

=> 101995+2 chia hết cho 3 => \(\left(\frac{10^{1995}+2}{3}\right)^2\in N\)

\(\RightarrowĐPCM\)

12 tháng 6 2015

 

N=111...1{1995 số 1} . 1000...05{1994 số 0}+1

  = \(\frac{\left(10^{1995-1}\right)}{9}.\left(10^{1995}+5\right)+1\)

  = \(\frac{10^{1995}.10^{1995}-1.10^{1995}+5.10^{1995}-5}{9}+1\)

  = \(\frac{10^{1995.2}+4.10^{1995}+4}{9}\)

  = \(\frac{\left(10^{1995}\right)^2+4.10^{1995}+4}{9}\)

  = \(\frac{\left(10^{1995}\right)^2+2.2.10^{1995}+2^2}{9}\)

  = \(\frac{\left(10^{1995}+2\right)^2}{9}=\left(\frac{10^{1995}+2}{3}\right)^2\)

Nhận thấy: 101995+2 có tổng các chữ số là: 1+0+0+0+...+0{1995 số 0}+2

Ta có: tổng các chữ số của 101995+2 chỉ có 1 chữ số 1 và 1 chữ số 2, còn lại là số 0.

=> tổng các chữ số của 101995+2 = 3

=> 101995+2 chia hết cho 3 => \(\left(\frac{10^{1995}+2}{3}\right)^2\in N\)

\(\RightarrowĐPCM\)

 

12 tháng 6 2015

mk trả lời gần xong , bạn cướp đi của mk trong gan tất hic hic

12 tháng 1 2016

Chứng minh cái gì?????

16 tháng 10 2018

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.

Vậy  M chia cho 3 dư 2,không là số chính phương.

Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.

Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.

Vậy số N chia cho 4 dư 2,không là số chính phương.