Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
11...1 555...55 (n chữ số 1; n -1 chữ số 5)
= 111…1 555…55 (n chữ số 1; n chữ số 5)
= 111…1 000…00 + 555….55 (n chữ số 1; n chữ số 0; n chữ số 5)
= 111….1 x 100…0 + 5.111…11 (n chữ số 1; n chữ số 0)
= 111…1 x (999…9 + 1) + 5.111…11
= 111…1 x 999…9 + 111…1 + 5.111…11
= (333…3)² + 6.111…1 (n chữ số 3)
= (333…3)² + 2.333…3
= (333…3)2
= 333…332 (n – 1 chữ số 3) là một số chính phương. (đpcm)
Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6
=> a.b + 1 = a.( 9.a + 6 )
= 9.a2 + 6.a + 1
= 9.a2 + 3.a + 3.a + 1
= 3.a.( 3.a + 1 ) + ( 3.a + 1 )
= ( 3.a + 1 ) . ( 3.a + 1 )
= ( 3.a + 1 )2 ( đpcm )
Vậy bài toán được chứng minh !
C.ơn nx bn đã tk cho mk ♥
Theo đề bài ra ta có :
b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6
\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 )
= 9 . a2 + 6 . a + 1
= 9 . a2 + 3 . a + 3 . a + 1
= 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )
= ( 3 . a + 1 ) . ( 3 . a + 1 )
= ( 3 . a + 1 )2
\(\Rightarrow\left(Đpcm\right)\)
Ta có
\(1111...11=\frac{10^{2n}-1}{9}\)
\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)
\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)
\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)
=> A là số chính phương
Đặt 11......1 (n chữ số 1 ) =a ( a thuộc N )
=> 2222.....2(n chữ số 2) =2a
100....0(n chữ số 0) = 9a+1
=> 1111....1(2n chữ số 1) = a.(9a+1)+a
Khi đó : A = a.(9a+1)+a-2a = 9a^2+a+a-2a=9a^2 = (3a)^2 là số chính phương)
=> ĐPCM
ta có 9a +1= 99.........9 +1 = 1000...0 (n c/s 9 và 0)
10.....0 = 10^n ( n c/s 10)
b= 10...0 +5 n c/s 0
=10^2 +5
9a +1+5
9a=6
a.b+1 = a.(9a+6)+1