Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y là hai số thực thỏa mãn:\(x^2+y^2-6x+5=0\).Tìm giá trị lớn nhất của P=x2 + y2 đạt tại x là ?
x^2+y^2-6x+5=0
<=>x^2-6x+9+y^2-4=0
<=> (x-3)^2+(y^2-4)=0
<=> (x-3)^2=0 hoặc y^2-4=0
<=> x=3 và y=-2;2
ta có P=x^2+y^2=3^2+2^2=13>=13
Max P=13 <=> x=3;y=-2;2
\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)
\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)
\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)
\(x^2+y^2=6x-5\)
\(\left(x-3\right)^2+y^2=2^2\Rightarrow1\le x\le5\)
\(1\le x^2+y^2\le25\)
quên mất rồi!