K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)

\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)

Áp dụng BĐT cô si với các số dương x; y2 ; x4 ; yta được :

\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)

Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

25 tháng 9 2019

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....

NV
8 tháng 10 2021

\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)

\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

6 tháng 3 2021

Xét 2 trường hợp:

TH1  : Nếu x,y trái dấu \(\Rightarrow xy< 0\Rightarrow P=1-xy>1\)

TH2: Nếu x,y cùng dấu \(\Rightarrow\)xy\(\ge0\)  \(\Rightarrow\)có 2 trường hợp xảy ra:

* Nếu xy=0\(\Rightarrow P=1-xy=1\)

* Nếu xy\(\ne0\Rightarrow\) \(xy>0\) 

Áp dụng bđt Cô-si : \(2x^{1006}y^{1006}=x^{2013}+y^{2013}\ge2x^{1006}y^{1006}\sqrt{xy}\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)

\(\Rightarrow-xy\ge-1\) \(\Rightarrow P=1-xy\ge1-1=0\)

Dấu = xảy ra \(\Leftrightarrow x=y=1\)

Vậy gtnn của P=0 \(\Leftrightarrow x=y=1\)

21 tháng 8 2019

Ta có: \(8\le xy+x+y\le\frac{\left(x+y\right)^2}{4}+x+y\)

Từ đó suy ra \(a+b\ge4\Rightarrow16\le\left(a+b\right)^2\le2\left(a^2+b^2\right)=2P\Rightarrow P\ge8\)

Vậy..

P/s: chắc là vậy đó!

30 tháng 9 2019

thh new ơi sai r bạn :))