K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(\text{Ta có:}A+2=x^2+3x+\frac{1}{4}+2=x^2+3x+\frac{9}{4}=x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2=\left(x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A+2\ge0\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

21 tháng 8 2017

Cách 1:

\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)

\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)

Vậy GTNN là 8 đạt được tại x = 2

21 tháng 8 2017

Cách 2: 

\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)

\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)

Dấu = xảy ra khi x = 2

20 tháng 12 2018

ĐKXĐ : \(x\ne0\)

\(A=x^2-3x+\frac{4}{x}+2016=\left(x^2-4x+4\right)+\left(x+\frac{4}{x}\right)+2012\)

\(A=\left(x-2\right)^2+\left(x+\frac{4}{x}\right)+2012\ge0+2\sqrt{x.\frac{4}{x}}+2012=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\x=\frac{4}{x}\end{cases}\Leftrightarrow x=2}\)

... 

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

14 tháng 10 2019

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)