Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.
+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.
Cách giải:
Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC
Gọi I là trung điểm của CD ⇒ IC = ID(1)
Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD
Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)
Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC
⇒ IA = IB = IC(2)
Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:
∠ BAC = 120 ° và b = c, khi đó ABC là một tam giác cân có góc A ở đỉnh bằng 120 ° và cạnh bên bằng b. Gọi M là trung điểm của cạnh BC. Kéo dài AM một đoạn MK = AM, ta có KA = KB = KC = AB = AC = b.
Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại K. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có: OS = OA = OB = OC và
Do đó ta có mặt cầu tâm O ngoại tiếp tứ diện và có bán kính
∠ BAC = 60 ° và b = c, khi đó ABC là tam giác đều cạnh b. Gọi I là trọng tâm của tam giác đều nên I đồng thời cũng là tâm của đường tròn ngoại tiếp tam giác đều ABC. Dựng d là đường thẳng vuông góc với mặt phẳng (ABC) tại I. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC và r 2 = OA 2 = OI 2 + IA 2
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
Vậy
Trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 30 ° thì góc của hai mặt phẳng đó chính là góc ∠ SCA. Thực vậy vì SA ⊥ (ABC) mà AC ⊥ CB nên ta có SC ⊥ CB. Do đó ∠SCA = 30 ° .
Vì AB = 2a nên ta có AC = a 2 ta suy ra
Gọi r là bán kính mặt cầu ngoại tiếp tứ diện khi ∠ SCA = 30 °
Ta có r = SB/2 = OA = OB = OC = OS, trong đó SB 2 = SA 2 + AB 2
Vậy
Do đó
Ta suy ra
Vậy \(SB^2=\dfrac{6a^2}{9}+4a^2=\dfrac{42a^2}{9}\)
Do đó \(SB=\dfrac{a\sqrt{42}}{3}\)
Ta suy ra :
\(r=\dfrac{SB}{2}=\dfrac{a\sqrt{42}}{6}\)
∠ BAC = 90 ° . Gọi M là trung điểm của BC, ta có MA = MB = MC. Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại M. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
Đáp án D