K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải: Đề bài có vẻ thừa dữ kiện.

Theo tính chất tia phân giác:

a)

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{6}{4,5}=\frac{4}{3}$

b) 

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{7-3}{3}=\frac{4}{3}$

Kẻ AH⊥BC tại H

Xét ΔABD có 

AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)

nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)

Xét ΔACD có

AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)

nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)

Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)

\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)

Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{6}{4.5}=\dfrac{8}{BD}\)

\(\Leftrightarrow BD=\dfrac{8\cdot4.5}{6}=\dfrac{36}{6}=6\left(cm\right)\)

Vậy:BD=6cm

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{8}{BD}=\dfrac{6}{CD}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{8}{BD}=\dfrac{6}{CD}=\dfrac{8+6}{BD+CD}=\dfrac{14}{BD}=\dfrac{14}{7}=2\)

Do đó:

\(\dfrac{6}{CD}=2\)

hay CD=3(cm)

Vậy: CD=3cm

24 tháng 3 2017

ta co: AB2+AC2=100      Ma BC2=100

\(\Rightarrow\Delta ABC\)vuong tai A

A, Trong \(\Delta ABC\)co AD la phan giac

\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)(tinh chat duong phan giac)

\(\Rightarrow\frac{AB}{AB+AC}=\frac{BD}{BD+DC}\)\(\Rightarrow\frac{8}{8+6}=\frac{BD}{10}\Rightarrow BD=\frac{8.10}{14}=\frac{40}{7}cm\)

ta co: BD+DC=BC\(\Rightarrow DC=BC-BD=10-\frac{40}{7}=\frac{30}{7}cm\)

B, Ke duong cao AH

ta co: \(S_{\Delta ABD}=\frac{1}{2}AH.BD\)va \(S_{\Delta ACD}=\frac{1}{2}AH.DC\)

\(\Rightarrow\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}=\frac{40}{7}:\frac{30}{7}=\frac{4}{3}\)

21 tháng 5 2020

-5/x=y/8.giải giúp mình

17 tháng 2 2022

cj tham khảo bài này nha!

 

 

21 tháng 2 2018

a, Theo tính chất đường phân giác ta có : \(\frac{AD}{AB}=\frac{DC}{BC}\)=> \(\frac{AD}{4}=\frac{DC}{6}\)=> \(\frac{AD}{2}=\frac{DC}{3}=\frac{AD+DC}{2+3}=\frac{AC}{5}=\frac{5}{5}=1\)

=> \(\hept{\begin{cases}AD=2\\DC=3\end{cases}}\)

21 tháng 2 2018

a) Áp  dụng tính chất đường phân giác ta có:

 \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{4}{6}=\frac{2}{3}\)

\(\Leftrightarrow\frac{AD}{2}=\frac{AB}{3}=\frac{AD+AB}{2+3}=1\)

\(\Leftrightarrow AD=2;AB=3\)

8 tháng 6 2021

a, Xét ΔABC và ΔHBA có:

∠BAC chung, ∠BHA=∠BAC (=90o)

=> ΔABC ∼ ΔHBA (g.g)

b, Áp dụng đ/l Pitago vào △ABC ta có:

BC2=AB2+AC2 => BC=√(62+82)=10 (cm)

Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC

=> 6.8=AH.10 => AH=4,8 (cm)

c, Xét △HAB và △HCA có:

∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)

=> △HAB ∼ △HCA (g.g)

=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)

d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)

=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)

=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)