K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
2 tháng 3 2021
Lời giải: Đề bài có vẻ thừa dữ kiện.
Theo tính chất tia phân giác:
a)
$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{6}{4,5}=\frac{4}{3}$
b)
$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{7-3}{3}=\frac{4}{3}$
21 tháng 2 2022
a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)
12 tháng 5 2023
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC
Kẻ AH⊥BC tại H
Xét ΔABD có
AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)
nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)
Xét ΔACD có
AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)
nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)
Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)
\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)
Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng