K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

11 tháng 2 2021

Đáp án:

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

image

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

6 tháng 4 2022

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

\(\stackrel\frown{ABD}=\stackrel\frown{EBD}\)

\(BD\left(chung\right)\)

=> ΔABD=ΔEBD(c.h-gn)

:Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE

=> ΔBAE cân tại B

mà \(\widehat{ABE}=60^o\)

=> ΔBAE đều(t/c tam giác cân)

28 tháng 4 2022

Lỗi

a: Bổ sung đê: góc ABC=60 độ

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
b: ΔBAD=ΔBED

=>BA=BE

mà góc ABE=60 độ

nên ΔBAE đều

c: Xét ΔEAC có góc EAC=góc ECA=30 độ

nên ΔEAC cân tại E

d: AB=5cm

góc ABC=60 độ

ΔABC vuông tại A có cos ABC=AB/BC

=>BC=10cm

=>AC=5*căn 3(cm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=goc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>BA=BE; DA=DE
=>BD là trung trực của AE