Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
Xét tam giác ABD và tam giác EBD có
góc BAD = góc BED = 90 độ
BD chung
góc ABD = góc EBD (BD là tia phân giác góc ABC)
=> tam giác ABD = tam giác EBD (ch-gn)
b) Gọi H là giao điểm của BD và AE
Ta có tam giác ABD = tam giác EBD
=> AB = BE
Xét tam giác ABH và tam giác EBH có
AB = BE
góc ABH = góc EBH
BH chung
=> tam giác ABH = tam giác EBH (c.g.c)
=> góc AHB = góc EHB (2 góc tương ứng) và AH = HE
AH = HE => H là trung điểm của AE
Góc AHB = góc AHE mà AHB + AHE = 180 độ
=> góc AHB = góc EHB = 90 độ => BH vuông góc với AE hay BD vuông góc với AE
Ta có BD vuông góc với AE tại H, H là trung điểm của AE => BD là đường trung trực của AE
chúc e học tốt
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE; DA=DE
=>BD là trung trực của AE