K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

A B C M D N E F G x y

Lấy điểm G đối xứng với E qua M. Khi đó, MN là đường tron bình của \(\Delta\)EFG => MN // FG (1)

Xét (O) có 2 cát tuyến CFA và CMD => \(\frac{CA}{CD}=\frac{CM}{CF}\) (Do \(\Delta\)CMF ~ \(\Delta\)CAD)

Áp dụng ĐL đường phân giác trong tam giác ta có: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{CA}{CD}=\frac{AB}{BD}\)

Suy ra: \(\frac{CM}{CF}=\frac{AB}{BD}=\frac{BM}{BE}\) (Vì \(\Delta\)ABD ~ \(\Delta\)MBE). Mà CM=BM nên BE = CF

Dễ thấy: Tứ giác BECG là hình bình hành => BE = CG và BE//CG. Do đó: CF = CG => \(\Delta\)GFC cân tại C

=> ^CFG = (180- ^GCF)/2 = (1800 - ^BAC)/2 (Vì BE//CG) = ^DAx = ^CAy => FG // AD (2 góc đồng vị bằng nhau) (2)

Từ (1) và (2) => MN // AD (đpcm).

P/S: Đường tròn (ADM) không cắt tia đối tia AC cũng được nhé bn. Trong trường hợp nó cắt tia đối thì c/m tương tự.

3 tháng 2 2020

Gọi K đối xứng với F qua M.

Tứ giác FBKC là hình bình hành\(\Rightarrow FC//BK\)

\(\Rightarrow\widehat{BKM}=\widehat{MEB};\widehat{BKM}=\widehat{MFA}\).Mà \(\widehat{AEM}=\widehat{MFA}\Rightarrow\widehat{BKM}=\widehat{MEB}\Rightarrow\)Tứ giác BMKE nội tiếp

\(\Rightarrow\widehat{BEK}=\widehat{DAE};\widehat{BEK}=\widehat{FMD}=\widehat{FAD}=\widehat{DAE}\)

\(\Rightarrow\widehat{BEK}=\widehat{DAE}\Rightarrow AD//EK\)

Do N là trung điểm của EF, M là trung điểm của FK \(\Rightarrow MN//EK\)

\(\Rightarrow MN//AD\left(đpcm\right)\)

ủa ko hiểu 

giờ mình có l 6

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K