Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BE=CD và BE vuông góc với CD.
b, KL là trung điểm cuarDE và AK=1/2BC.
hic em chào chị em mới lớp 5 em thật vô lễ qá xin lỗi chị
Bạn vẽ hình ra nhé!
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Chúc bạn học giỏi!
tk nha bạn
thank you bạn
(^_^)
a)- Ta có: △ABD vuông tại A và \(AB=AD\left(gt\right)\)
=>△ABD vuông cân tại A.
- Ta có: \(\left[{}\begin{matrix}DM\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(DM\)//\(BC\).
=>\(\widehat{BDM}+\widehat{DMH}=180^0\) (2 góc trong cùng phía).
=>\(\widehat{ADM}+\widehat{ADB}+\widehat{ABH}+\widehat{ABD}=180^0\).
Mà \(\widehat{ADB}=\widehat{ABD}=45^0\)(△ABD vuông cân tại A)
=>\(\widehat{ADM}+45^0+\widehat{ABH}+45^0=180^0\)
=>\(\widehat{ADM}+\widehat{ABH}+90^0=180^0\)
=>\(\widehat{ADM}+\widehat{ABH}=90^0\)
Mà \(\widehat{ADM}+\widehat{MAD}=90^0\) (△ADM vuông tại M).
=>\(\widehat{ABH}=\widehat{MAD}\).
- Xét △ADM vuông tại M và △BAH vuông tại H có:
\(AD=AB\left(gt\right)\)
\(\widehat{ABH}=\widehat{MAD}\) (cmt)
=>△ADM = △BAH (cạnh huyền-góc nhọn).
=>\(DM=AH\) (2 cạnh tương ứng).
b) - Sửa đề: Gọi I là trung điểm của MN.
- Ta có: △ACE vuông tại A và \(AC=AE\left(gt\right)\)
=>△ACE vuông cân tại A.
- Ta có: \(\left[{}\begin{matrix}EN\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(EN\)//\(BC\).
=>\(\widehat{NEC}+\widehat{HCE}=180^0\) (2 góc trong cùng phía).
=>\(\widehat{AEN}+\widehat{AEC}+\widehat{ACE}+\widehat{ACB}=180^0\).
Mà \(\widehat{AEC}=\widehat{ACE}=45^0\)(△ACE vuông cân tại A)
=>\(\widehat{AEN}+45^0+\widehat{ACB}+45^0=180^0\)
=>\(\widehat{AEN}+\widehat{ACB}+90^0=180^0\)
=>\(\widehat{AEN}+\widehat{ACB}=90^0\)
Mà \(\widehat{AEN}+\widehat{NAE}=90^0\) (△ANE vuông tại N).
=>\(\widehat{ACB}=\widehat{NAE}\).
- Xét △ANE vuông tại N và △CHA vuông tại H có:
\(AN=AC\left(gt\right)\)
\(\widehat{ACB}=\widehat{NAE}\) (cmt)
=>△ANE = △CHA (cạnh huyền-góc nhọn).
=>\(NE=AH\) (2 cạnh tương ứng) mà \(DM=AH\) (cmt)
=>\(NE=DM\).
- Xét △DMI và △ENI có:
\(\left[{}\begin{matrix}DM=NE\left(cmt\right)\\\widehat{DMI}=\widehat{ENI}=90^0\\MI=NI\left(IlàtrungđiểmMN\right)\end{matrix}\right.\)
=>△DMI = △ENI (c-g-c).
=>\(\widehat{DIM}=\widehat{EIN}\) (2 góc tương ứng).
Mà \(\widehat{DIM}+\widehat{DIN}=180^0\) (kề bù).
=>\(\widehat{EIN}+\widehat{DIN}=180^0\)
=>\(\widehat{EID}=180^0\) hay 3 điểm E,I,D thẳng hàng.