K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

a, BE=CD và BE vuông góc với CD.

b, KL là trung điểm cuarDE và AK=1/2BC.

27 tháng 2 2018

khó qá kết bạn nhé?

27 tháng 2 2018

hic em chào chị em mới lớp 5 em thật vô lễ qá xin lỗi chị

1 tháng 1 2017

 Bạn vẽ hình ra nhé! 
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE. 
Chúc bạn học giỏi!

tk nha bạn

thank you bạn

(^_^)

1 tháng 1 2017

yêu bạn quá!!! cảm ơn bạn nhiều

31 tháng 1 2022

a)- Ta có: △ABD vuông tại A và \(AB=AD\left(gt\right)\)

=>△ABD vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}DM\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(DM\)//\(BC\).

=>\(\widehat{BDM}+\widehat{DMH}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{ADM}+\widehat{ADB}+\widehat{ABH}+\widehat{ABD}=180^0\).

Mà \(\widehat{ADB}=\widehat{ABD}=45^0\)(△ABD vuông cân tại A)

=>\(\widehat{ADM}+45^0+\widehat{ABH}+45^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}+90^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}=90^0\)

Mà \(\widehat{ADM}+\widehat{MAD}=90^0\) (△ADM vuông tại M).

=>\(\widehat{ABH}=\widehat{MAD}\).

- Xét △ADM vuông tại M và △BAH vuông tại H có:

\(AD=AB\left(gt\right)\)

\(\widehat{ABH}=\widehat{MAD}\) (cmt)

=>△ADM  = △BAH (cạnh huyền-góc nhọn).

=>\(DM=AH\) (2 cạnh tương ứng).

b) - Sửa đề: Gọi I là trung điểm của MN.

- Ta có: △ACE vuông tại A và \(AC=AE\left(gt\right)\)

=>△ACE vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}EN\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(EN\)//\(BC\).

=>\(\widehat{NEC}+\widehat{HCE}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{AEN}+\widehat{AEC}+\widehat{ACE}+\widehat{ACB}=180^0\).

Mà \(\widehat{AEC}=\widehat{ACE}=45^0\)(△ACE vuông cân tại A)

=>\(\widehat{AEN}+45^0+\widehat{ACB}+45^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}+90^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}=90^0\)

Mà \(\widehat{AEN}+\widehat{NAE}=90^0\) (△ANE vuông tại N).

=>\(\widehat{ACB}=\widehat{NAE}\).

- Xét △ANE vuông tại N và △CHA vuông tại H có:

\(AN=AC\left(gt\right)\)

\(\widehat{ACB}=\widehat{NAE}\) (cmt)

=>△ANE = △CHA (cạnh huyền-góc nhọn).

=>\(NE=AH\) (2 cạnh tương ứng) mà \(DM=AH\) (cmt)

=>\(NE=DM\).

- Xét △DMI và △ENI có:

\(\left[{}\begin{matrix}DM=NE\left(cmt\right)\\\widehat{DMI}=\widehat{ENI}=90^0\\MI=NI\left(IlàtrungđiểmMN\right)\end{matrix}\right.\)

=>△DMI = △ENI (c-g-c).

=>\(\widehat{DIM}=\widehat{EIN}\) (2 góc tương ứng).

Mà \(\widehat{DIM}+\widehat{DIN}=180^0\) (kề bù).

=>\(\widehat{EIN}+\widehat{DIN}=180^0\)

=>\(\widehat{EID}=180^0\) hay 3 điểm E,I,D thẳng hàng.

31 tháng 1 2022

- Hình vẽ:

undefined