Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
a) Xét tgiac ABC và ADE có:
+ góc BAC = DAE = 90 độ (góc kề bù)
+ AB = AE
+ AC = AE
=> Tgiac ABC = ADE (c-g-c)
=> DE = BC (2 cạnh t/ứng)
=> đpcm
b) Gọi O là giao điểm của DE và BC
Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB
=> góc OEB + góc B = góc B + ACB
Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)
=> góc OEB + B = 90 độ
Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ
=> DE vuông góc BC (đpcm)
c) 4. góc B = 5. góc C => góc B = 5/4. góc C
Mà tổng góc B + góc C = 90 độ
=> (tổng tỉ) => góc C = 40 độ
=> góc AED = 40 độ
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)