Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: AB2=AH2+BI2AB2=AH2+BI2
hay:132=AH2+52132=AH2+52
⇒AH2=132−52⇒AH2=132−52
⇔AH=√132−52=12⇔AH=132−52=12
Vậy AH=12cm
a, Xét Δ AHB và Δ AHC, có :
AH là cạnh chung
AB = AC (Δ ABC cân tại A)
HB = HC (AH là đường trung tuyến của BC)
=> Δ AHB = Δ AHC (c.c.c)
b, Xét Δ ABC cân tại A, có :
AH là đường trung tuyến
=> AH là đường cao
=> \(\widehat{AHC}=\widehat{AHB}=90^o\)
c, đề kì dzậy
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) \(HB=HC=\frac{BC}{2}=\frac{10}{2}=5cm\)
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: \(AB^2=AH^2+BI^2\)
hay:\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}=12\)
Vậy AH=12cm
a)
theo giả thiết ta có :
AH là đường trung tuyến \(\Rightarrow BH=HC\)
xét \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\) (gt)
\(AH\) chung
\(BH=HC\) ( cmt)
\(\Rightarrow\Delta AHB=\Delta AHC\) (c.c.c)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng )
b)
ta có : \(\widehat{AHB}+\widehat{AHC}=180^0\) ( kề bù )
mà \(\widehat{AHB}=\widehat{AHC}\) (theo a)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
c) \(BH=HC=\frac{10}{2}=5\) (cm)
xét \(\Delta AHB\perp\) tại H
áp dụng định lý py-ta-go ta có:
\(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=169-25=144=\sqrt{144}=12\) (cm)
a) Xét hai tam giác AHB và AHC ta có
AB = AC (gt)
\(\widehat{B}=\widehat{C}\)(gt)
BH = HC (gt)
Do đó: \(\Delta AHB=\Delta AHC\)(c-g-c)
b) Ta có: \(\Delta AHB=\Delta AHC\)(câu a)
=> \(\widehat{AHB}=\widehat{AHC}\)(cặp góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
c) Ta có BH = HC (gt)
Mà BH + HC = BC
hay BH + HC = 10 (cm)
=> BH = HC = 5 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông ABH có
\(AB^2-BH^2=AH^2\)
\(13^2-5^2=AH^2\)
\(12^2=AH^2\)
=> AH = 12
P/s: k hộ thần =))))
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
Bn xem lại câu d nhé
`a)`
Có `Delta ABC` cân tại `A`
`=>hat(B)=hat(C)=(180^0-hat(BAC))/2`
hay `hat(B)=hat(C)=(180^0-50^0)/2`
`=>hat(B)=hat(C)=130^0/2=65^0`
`b)`
Có `H` là tđ `BC(GT)=>BH=HC`
Xét `Delta ABH` và `Delta ACH` có :
`{:(AB=AC(GT)),(AH-chung),(BH=CH(cmt)):}}`
`=>Delta ABH=Delta ACH(c.c.c)(đpcm)`
`c)`
Có `AB=AC=>A in` trung trực của `BC`(1)
`BH=CH=>H in` trung trực của `BC`(2)
Từ (1) và (2)`=>AH` là trung trực của `BC`
`=>AH⊥BC(đpcm)`
ban tu ve hinh nha
a) Xet tam giac ahb ca tam giac ahc co
ab=ac(tam giac abc can tai a)
ah chung
hb=hc(t\c duong trung tuyen trong tam giac)
\(\Rightarrow\)tam giac ahb=tam giac ahc(c-c-c)
b) vi tam giac ahb=tam giac ahc nen
goc ahb=ahc(2 goc t\u) ma 2 goc nay ke bu nen ahb=ahc=1\2.180=90 do
c) ap dung dinh ly pi ta go trong tam giac ahb(goc h=90 do) co
ah^2=ab^2-hb^2
ah^2=13^2-(10\2)^2
ah^2=13^2-5^2
ah^2=169-25
ah^2=144
ah=\(\sqrt{144}\)
ah=12
k dum mk nha
cám ơn nha