K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

A B C G M N

 

vì tgiac ABC cân tại A

có BM và CN là trung tuyến=> AM=MC=AN=NB

a, xét tgiac BMC và tgiac CNB có:

BC là cạnh chung

góc B= góc C(gt)

BM=CN(cmt)

vậy tgiac BMC=Tgiac CNB(c.g.c)

b. xét tgiac AMN có AM=AN(cmt)

=> tgiac AMN cân tại đỉnh A

ta lại có tgiac ABC cân tại A 

Vậy góc ANM= góc ABC= (180-góc A):2

mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC

 

18 tháng 5 2016

c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC

mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC

mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)

16 tháng 4 2017

Hình các bạn tự vẽ nhé !

a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến

\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)

\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )

Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)

Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC  (đpcm)

b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC

VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy

nên \(AG⊥BC\)

Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)

3 tháng 1 2018

9 tháng 5 2022

A B C G M N E

hình minh họa thôi nhé

trong △ABC có :

     BM là đường trung tuyến thứ nhất

     CN là đường trung tuyến thứ hai

Mà hai đường này cắt nhau tại G

=> G là trọng tâm của △ABC

=> AG là đường trung tuyến thứ ba của △ABC

Lại có : △ABC cân tại A

=> AG cũng là đường p/g của △ABC

=> AG là tia p/g của góc BAC

=> AE là tia p/g của góc BAC ( vì E ∈ AG )

16 tháng 6 2020

C) MN // BC

o l m . v n

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)