Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A. Ba đường trung tuyến AD, BM, CN cắt nhau tại G. Trên tia AG xác định điểm E sao cho G là trung điểm của AE.a. CM: BM = CN
b. CM: DG = DE; CE // BM
c. Cho CE = 8cm. Hãy tính độ dài 2 đường trung tuyến BM, CN
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
hình minh họa thôi nhé
trong △ABC có :
BM là đường trung tuyến thứ nhất
CN là đường trung tuyến thứ hai
Mà hai đường này cắt nhau tại G
=> G là trọng tâm của △ABC
=> AG là đường trung tuyến thứ ba của △ABC
Lại có : △ABC cân tại A
=> AG cũng là đường p/g của △ABC
=> AG là tia p/g của góc BAC
=> AE là tia p/g của góc BAC ( vì E ∈ AG )