K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có

AD,BE,CF là trung tuyến

AD,BE,CF cắt nhau tai G

=>G là trọng tâm

=>BG=2/3BE=2BM và CG=2/3CF=2CN

=>M,N lần lượt là trung điểm của GB,GC

=>GD,CM,BN đồng quy

=>AD,CM,BN đồng quy

24 tháng 3 2022

-△ABC có: G là trọng tâm; AD, BE, CF là các trung tuyến:

\(\Rightarrow BG=\dfrac{2}{3}BE;CG=\dfrac{2}{3}CF\)

\(\Rightarrow BG=2BM;CG=2CN\)

\(\Rightarrow\)M là trung điểm BG ; N là trung điểm CG.

-△BCG có: CM là trung tuyến (N là trung điểm CG) ; BN là trung tuyến 

(M là trung điểm BG) ; GD là trung tuyến (D là trung điểm BC)

\(\Rightarrow\)AD; BN; CM đồng quy.

a: ΔABC can tại A

mà AD là trung tuyến

nên AD là phân giác

b: Xet ΔABE và ΔACF có

AB=AC
góc BAE chung

AE=AF
=>ΔABE=ΔACF

=>góc ABE=góc ACF=1/2*góc ABC

=>BE là phân giác của góc ABC

c: Xet ΔABC có

BE,CF,AD là phân giác

=>BE,CF,AD đồng quy

a: Xét ΔBFC và ΔCEB có

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

30 tháng 8 2021

a) Xét tam giác BFC và CEB ta có: 

Góc FBC = góc ECB

BF = CE

BC cạnh chung 

=> tam giác BFC = tam giác CEB (c-g-c)

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

30 tháng 8 2021

mọi người giúp minhf  với

 

 

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy