Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
\(A=\dfrac{\left(x_1+x_2\right)^2+3x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\dfrac{9+3}{4\cdot1\left(-3\right)}=\dfrac{12}{-12}=-1\)
Ptr có:`\Delta=(-3)^2-4.2.(-3)=33 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=3/2),(x_1.x_2=c/a=[-3]/2):}`
Ta có:`B=x_1 ^2 x_2+x_2 ^2 x_1`
`<=>B=x_1.x_2(x_1+x_2)`
`<=>B=[-3]/2 . 3/2=[-9]/4`
\(2x^2-3x-3=0\)
\(B=x_1^2x_2+x_2^2x_1=x_1x_2\left(x_1+x_2\right)\)
Theo hệ thức Vi -ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=\dfrac{-3}{2}\end{matrix}\right.\)
= \(\dfrac{-3}{2}.\dfrac{3}{2}=\dfrac{-9}{4}\)
Vậy \(B=x_1^2x_2+x_2^2x_1=\dfrac{-9}{4}\)
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11
A=11