K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

Ptr có:`\Delta=(-3)^2-4.2.(-3)=33 > 0`

`=>` Ptr có `2` nghiệm pb

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=3/2),(x_1.x_2=c/a=[-3]/2):}`

Ta có:`B=x_1 ^2 x_2+x_2 ^2 x_1`

`<=>B=x_1.x_2(x_1+x_2)`

`<=>B=[-3]/2 . 3/2=[-9]/4`

27 tháng 5 2022

\(2x^2-3x-3=0\) 

\(B=x_1^2x_2+x_2^2x_1=x_1x_2\left(x_1+x_2\right)\)

Theo hệ thức Vi -ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=\dfrac{-3}{2}\end{matrix}\right.\)

\(\dfrac{-3}{2}.\dfrac{3}{2}=\dfrac{-9}{4}\)

Vậy \(B=x_1^2x_2+x_2^2x_1=\dfrac{-9}{4}\)

16 tháng 3 2022

1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)

\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)

\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)

8 tháng 4 2021

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)

Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2

= 5x1x2 + 2( x1 + x2 )2 - 4x1x2

= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11

25 tháng 6 2021

A=11

16 tháng 3 2022

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-6\end{matrix}\right.\)

\(E=2x_1^2x_2+2x_1x_2^2\\ =2x_1x_2\left(x_1+x_2\right)\\ =2.\left(-6\right).7\\ =-84\)

19 tháng 1 2023

\(x^2-2x-\sqrt{3}+1=0\)

\(\Delta=b^2-4ac=4-4\left(-\sqrt{3}+1\right)=4\sqrt{3}>0\)

\(\rightarrow\)Phương trình có 2 nghiệm phân biệt

Theo vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1x_2=\dfrac{c}{a}=-\sqrt{3}+1\end{matrix}\right.\)

\(M=x_1^2x_2^2-2x_1x_2-x_1-x_2\)

\(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)

\(=\left(-\sqrt{3}+1\right)^2-2\left(-\sqrt{3}+1\right)-2\)

\(=0\)

\(A=\dfrac{\left(x_1+x_2\right)^2+3x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\dfrac{9+3}{4\cdot1\left(-3\right)}=\dfrac{12}{-12}=-1\)