K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

A B C D H

a) Xét △AHD và △BCD có :

            \(\widehat{H}=\widehat{D}=\left(90^o\right)\)

            \(\widehat{D}=\widehat{B}\)(slt)

\(\Rightarrow\)△AHD ~ △BCD (g.g)

b) Xét △AHB và △DAB có :

           \(\widehat{B}\)là góc chung

          \(\widehat{A}=\widehat{H}=\left(90^o\right)\)

\(\Rightarrow\)△AHB ~ △DAB (g.g)

\(\Rightarrow\)\(\frac{AH}{AD}=\frac{AB}{BD}\)

\(\Rightarrow AH.BD=AD.AB\)(ĐPCM)

18 tháng 6 2020

a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC) 

b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.

c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.

Biết AH, BD tính được S tam giác.

5 tháng 6 2020

A B C D H 8cm 6cm

                      Giải

a) Xét\(\Delta AHB\)\(\Delta BCD\)có:

        \(\widehat{AHB}=\widehat{BCD}=90^o\)

       \(\widehat{ABH}=\widehat{BDC}\) (so le trong)

    =>\(\Delta AHB~\Delta BCD\) (g.g)

b) Xét\(\Delta AHD\)\(\Delta AHB\)có:

        \(\widehat{AHD}=\widehat{BHA}=90^o\)

        \(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))

 =>\(\Delta AHD~\Delta AHB\) (g.g)

Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)

Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)

c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:

            \(BD^2=BC^2+DC^2\)

            \(BD^2=6^2+8^2\)   

           \(BD^2=36+64\)

           \(BD=\sqrt{100}=10\left(cm,BD>0\right)\)

  Xét tam giác vuông ABD có:

     \(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)

 Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:

        \(AB^2=AH^2+HB^2\)

        \(8^2=4,8^2+HB^2\)

        \(HB^2=8^2-4,8^2\)

        \(HB^2=40,96\)

        \(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)

=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)

Còn HC bn tự tính nhé!

 #hoktot<3# 

    

            

a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có

góc DBA chung

=>ΔAHB đồng dạng với ΔDAB

b: ΔABD vuông tại A có AH vuông góc BD

nên AD^2=DH*BD=DH*AC

20 tháng 3 2023

k

 

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)