Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △AHD và △BCD có :
\(\widehat{H}=\widehat{D}=\left(90^o\right)\)
\(\widehat{D}=\widehat{B}\)(slt)
\(\Rightarrow\)△AHD ~ △BCD (g.g)
b) Xét △AHB và △DAB có :
\(\widehat{B}\)là góc chung
\(\widehat{A}=\widehat{H}=\left(90^o\right)\)
\(\Rightarrow\)△AHB ~ △DAB (g.g)
\(\Rightarrow\)\(\frac{AH}{AD}=\frac{AB}{BD}\)
\(\Rightarrow AH.BD=AD.AB\)(ĐPCM)
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: \(\dfrac{AD^2}{AB^2}=\dfrac{DH\cdot BD}{BH\cdot BD}=\dfrac{HD}{HB}\)
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
ban tim canh MH va canh NH. Sau do chung minh tam giacAMH dong dang tam giacNHB roi suy ra canh ti le va goc de chung minh 2 tam giac do dong dang
a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC)
b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.
c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.
Biết AH, BD tính được S tam giác.