Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(AB//CD\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)
Mà \(\widehat{B}=2\widehat{C}\Leftrightarrow2\widehat{B}=180^0\)
\(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=45^0\)
\(\widehat{A}+\widehat{D}=180^0\)
Mà \(\widehat{A}=\widehat{D}+40\Rightarrow\widehat{A}=70,\widehat{D}=110\)
a) Vì ABCD là hình thang cân
=> B = A = 120°
=> Mà AB//CD
=> A + D = 180° ( trong cùng phía)
=> D = C = 60°
do AB song song với CD nên ta có \(A+D=180^0\text{ mà }A=D+40^0\Rightarrow D+40^0+D=180^0\Rightarrow\hept{\begin{cases}D=70^0\\A=110^0\end{cases}}\)
\(\Rightarrow C=\frac{A}{2}=55^0\Rightarrow B=180^0-55^0=125^0\)
cho hình thang cân ABCD ( AB song song CD) có góc D=60 độ
a)Tính các góc ABCD
b)Cho AD=AB tính AB/CD
Vì AB//CD nên \(\left\{{}\begin{matrix}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{matrix}\right.\left(trong.cùng.phía\right)\)
Mà \(\widehat{A}-\widehat{D}=30^0;\widehat{B}=2\widehat{C}\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(180^0+30^0\right):2=105^0\\\widehat{D}=180^0-105^0=75^0\\3\widehat{C}=180^0\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=60^0\Rightarrow\widehat{B}=120^0\)
a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD
Ta có : AB//CD (gt) => E = A1 (so le trong)
Mà A1 =A2 (gt)
Nên A2 = E
Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến
=>AM= EM
Chứng minh tương tự, ta được :
BN = FN
Xét hình thang ABEF có : AM=BN(cm trên)
BN=FN(cm trên)
Do đó MN là đường TB của HÌNH thang ABEF
=> MN= \(\frac{EF+AB}{2}\)
MN//AB//EF Vậy MN// CD(đpcm)
b)Do ED= AD; BC=FC
Mà ED + DC + CF = EF
Nên AD + DC + BC = EF
Lại có MN \(\frac{EF+AB}{2}\)(CM trên)
Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)