Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(I\) là giao điểm điểm \(BD\)và \(AC\).
Xét \(\Delta ABD\)có tia p.giác \(AM\)có: \(\frac{AB}{AD}=\frac{BM}{DM}\)
Tương tự ta có: \(\frac{CD}{AD}=\frac{CN}{AN}\)
Mà: \(AB=CD\Rightarrow\frac{BM}{DM}=\frac{CN}{AN}\)
Từ trên ta suy ra: \(\frac{BM}{DM}+1=\frac{CN}{AN}+1\Leftrightarrow\frac{BD}{DM}=\frac{AC}{AN}\Leftrightarrow\frac{AI}{DM}=\frac{AI}{AN}\)
\(\Rightarrow MN//AD\left(đpcm\right)\)
Ta có AM,DN lần lượt là phân giác \(\Delta ABD,\Delta ADC\)
\(\Rightarrow\dfrac{MD}{MB}=\dfrac{AD}{AB};\dfrac{NA}{NC}=\dfrac{AD}{DC}\)
Mà \(AB=CD\left(gt\right)\\ \Rightarrow\dfrac{MD}{MB}=\dfrac{NA}{NC}\Rightarrow\dfrac{MD+AB}{MB}=\dfrac{NA+NC}{NC}\\ \Rightarrow\dfrac{BD}{MB}=\dfrac{CA}{NC}\)
Theo đlí Talet đảo ta được MN//BC